

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Digital
Fundamentals

Tenth Edition

Floyd

Chapter 2

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

The position of each digit in a weighted number system is
assigned a weight based on the base or radix of the system.
The radix of decimal numbers is ten, because only ten
symbols (0 through 9) are used to represent any number.

Summary

The column weights of decimal numbers are powers
of ten that increase from right to left beginning with 100 =1:

Decimal Numbers

…105 104 103 102 101 100.
For fractional decimal numbers, the column weights

are negative powers of ten that decrease from left to right:

102 101 100. 10-1 10-2 10-3 10-4 …

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Decimal Numbers

Express the number 480.52 as the sum of values of each
digit.

(9 x 103) + (2 x 102) + (4 x 101) + (0 x 100)
or

9 x 1,000 + 2 x 100 + 4 x 10 + 0 x 1

Decimal numbers can be expressed as the sum of the
products of each digit times the column value for that digit.
Thus, the number 9240 can be expressed as

480.52 = (4 x 102) + (8 x 101) + (0 x 100) + (5 x 10-1) +(2 x 10-2)

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Numbers

For digital systems, the binary number system is used.
Binary has a radix of two and uses the digits 0 and 1 to
represent quantities.

The column weights of binary numbers are powers of
two that increase from right to left beginning with 20 =1:

…25 24 23 22 21 20.

For fractional binary numbers, the column weights
are negative powers of two that decrease from left to right:

22 21 20. 2-1 2-2 2-3 2-4 …

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Numbers

A binary counting sequence for numbers
from zero to fifteen is shown.

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

Decimal
Number

Binary
Number

Notice the pattern of zeros and ones in
each column.

Counter Decoder1 0 1 0 1 0 1 00 1

0 1 1 0 0 1 1 00 0

0 0 0 1 1 1 1 00 0

0 0 0 0 0 0 0 10 1

Digital counters frequently have this
same pattern of digits:

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Conversions

The decimal equivalent of a binary number can be
determined by adding the column values of all of the bits
that are 1 and discarding all of the bits that are 0.

Convert the binary number 100101.01 to decimal.

Start by writing the column weights; then add the
weights that correspond to each 1 in the number.

25 24 23 22 21 20. 2-1 2-2

32 16 8 4 2 1 . ½ ¼
1 0 0 1 0 1. 0 1

32 +4 +1 +¼ = 37¼

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Conversions

You can convert a decimal whole number to binary by
reversing the procedure. Write the decimal weight of each
column and place 1’s in the columns that sum to the decimal
number.

Convert the decimal number 49 to binary.

The column weights double in each position to the
right. Write down column weights until the last
number is larger than the one you want to convert.

26 25 24 23 22 21 20.
64 32 16 8 4 2 1.
0 1 1 0 0 0 1.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

You can convert a decimal fraction to binary by repeatedly
multiplying the fractional results of successive
multiplications by 2. The carries form the binary number.

Convert the decimal fraction 0.188 to binary by
repeatedly multiplying the fractional results by 2.

0.188 x 2 = 0.376 carry = 0
0.376 x 2 = 0.752 carry = 0
0.752 x 2 = 1.504 carry = 1
0.504 x 2 = 1.008 carry = 1
0.008 x 2 = 0.016 carry = 0

Answer = .00110 (for five significant digits)

MSB

Binary Conversions

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

10011 0

Summary

You can convert decimal to any other base by repeatedly
dividing by the base. For binary, repeatedly divide by 2:

Convert the decimal number 49 to binary by
repeatedly dividing by 2.

You can do this by “reverse division” and the
answer will read from left to right. Put quotients to
the left and remainders on top.

49 2
Decimal
number

base

24
remainder

Quotient

126310
Continue until the
last quotient is 0

Answer:

Binary Conversions

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Addition

The rules for binary addition are
0 + 0 = 0 Sum = 0, carry = 0
0 + 1 = 0 Sum = 1, carry = 0
1 + 0 = 0 Sum = 1, carry = 0
1 + 1 = 10 Sum = 0, carry = 1

When an input carry = 1 due to a previous result, the rules
are

1 + 0 + 0 = 01 Sum = 1, carry = 0
1 + 0 + 1 = 10 Sum = 0, carry = 1
1 + 1 + 0 = 10 Sum = 0, carry = 1
1 + 1 + 1 = 10 Sum = 1, carry = 1

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Addition

Add the binary numbers 00111 and 10101 and show
the equivalent decimal addition.

00111 7
10101 21

0

1

0

1

1

1

1

0

1 28=

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Binary Subtraction

The rules for binary subtraction are
0  0 = 0
1  1 = 0
1  0 = 1

10  1 = 1 with a borrow of 1

Subtract the binary number 00111 from 10101 and
show the equivalent decimal subtraction.

00111 7
10101 21

0

/
1

1110 14

/
1

/
1

=

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

1’s Complement

The 1’s complement of a binary number is just the inverse
of the digits. To form the 1’s complement, change all 0’s to
1’s and all 1’s to 0’s.
For example, the 1’s complement of 11001010 is

00110101

In digital circuits, the 1’s complement is formed by using
inverters: 1 1 0 0 1 0 1 0

0 0 1 1 0 1 0 1

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

2’s Complement

The 2’s complement of a binary number is found by
adding 1 to the LSB of the 1’s complement.

Recall that the 1’s complement of 11001010 is
00110101 (1’s complement)

To form the 2’s complement, add 1: +1
00110110 (2’s complement)

Adder

Input bits

Output bits (sum)

Carry
in (add 1)

1 1 0 0 1 0 1 0

0 0 1 1 0 1 0 1

1

0 0 1 1 0 1 1 0

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Signed Binary Numbers

There are several ways to represent signed binary numbers.
In all cases, the MSB in a signed number is the sign bit, that
tells you if the number is positive or negative.

Computers use a modified 2’s complement for
signed numbers. Positive numbers are stored in true form
(with a 0 for the sign bit) and negative numbers are stored
in complement form (with a 1 for the sign bit).

For example, the positive number 58 is written using 8-bits as
00111010 (true form).

Sign bit Magnitude bits

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Signed Binary Numbers

Assuming that the sign bit = 128, show that 11000110 = 58
as a 2’s complement signed number:

1 1 0 0 0 1 1 0
Column weights: 128 64 32 16 8 4 2 1.

128 +64 +4 +2 = 58

Negative numbers are written as the 2’s complement of the
corresponding positive number.

58 = 11000110 (complement form)
Sign bit Magnitude bits

An easy way to read a signed number that uses this notation is to
assign the sign bit a column weight of 128 (for an 8-bit number).
Then add the column weights for the 1’s.

The negative number 58 is written as:

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Floating Point Numbers

Express the speed of light, c, in single precision floating point
notation. (c = 0.2998 x 109)

Floating point notation is capable of representing very
large or small numbers by using a form of scientific
notation. A 32-bit single precision number is illustrated.

S E (8 bits) F (23 bits)

Sign bit Magnitude with MSB dropped Biased exponent (+127)

In scientific notation, c = 1.001 1101 1110 1001 0101 1100 0000 x 228.

0 10011011 001 1101 1110 1001 0101 1100

In binary, c = 0001 0001 1101 1110 1001 0101 1100 00002.

S = 0 because the number is positive. E = 28 + 127 = 15510 = 1001 10112.
F is the next 23 bits after the first 1 is dropped.
In floating point notation, c =

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Arithmetic Operations with Signed Numbers

Using the signed number notation with negative
numbers in 2’s complement form simplifies addition
and subtraction of signed numbers.

Rules for addition: Add the two signed numbers. Discard
any final carries. The result is in signed form.
Examples:

00011110 = +30
00001111 = +15
00101101 = +45

00001110 = +14
11101111 = 17
11111101 = 3

11111111 = 1
11111000 = 8
11110111 = 91

Discard carry

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Arithmetic Operations with Signed Numbers

01000000 = +128
01000001 = +129
10000001 = 126

10000001 = 127
10000001 = 127

100000010 = +2

Note that if the number of bits required for the answer is
exceeded, overflow will occur. This occurs only if both
numbers have the same sign. The overflow will be
indicated by an incorrect sign bit.

Two examples are:

Wrong! The answer is incorrect
and the sign bit has changed.

Discard carry

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Arithmetic Operations with Signed Numbers

Rules for subtraction: 2’s complement the subtrahend and
add the numbers. Discard any final carries. The result is in
signed form.

00001111 = +151

Discard carry

2’s complement subtrahend and add:
00011110 = +30
11110001 = 15

Repeat the examples done previously, but subtract:
00011110
00001111

00001110
11101111

11111111
11111000 

00011111 = +31

00001110 = +14
00010001 = +17

00000111 = +71

Discard carry

11111111 = 1
00001000 = 8

(+30)
–(+15)

(+14)
–(17)

(1)
–(8)

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Hexadecimal Numbers

Hexadecimal uses sixteen characters to
represent numbers: the numbers 0
through 9 and the alphabetic characters
A through F.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Hexadecimal Binary

Large binary number can easily
be converted to hexadecimal by
grouping bits 4 at a time and writing
the equivalent hexadecimal character.

Express 1001 0110 0000 11102 in
hexadecimal:
Group the binary number by 4-bits
starting from the right. Thus, 960E

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Hexadecimal Numbers

Hexadecimal is a weighted number
system. The column weights are
powers of 16, which increase from
right to left.

.

1 A 2 F16

670310

Column weights 163 162 161 160

4096 256 16 1 .{
Express 1A2F16 in decimal.

Start by writing the column weights:
4096 256 16 1

1(4096) + 10(256) +2(16) +15(1) =

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Hexadecimal Binary

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Octal Numbers

Octal uses eight characters the numbers
0 through 7 to represent numbers.
There is no 8 or 9 character in octal.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Octal Binary

Binary number can easily be
converted to octal by grouping bits 3 at
a time and writing the equivalent octal
character for each group.

Express 1 001 011 000 001 1102 in
octal:
Group the binary number by 3-bits
starting from the right. Thus, 1130168

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Octal Numbers

Octal is also a weighted number
system. The column weights are
powers of 8, which increase from right
to left.

.

3 7 0 28

198610

Column weights 83 82 81 80

512 64 8 1 .{
Express 37028 in decimal.

Start by writing the column weights:
512 64 8 1

3(512) + 7(64) +0(8) +2(1) =

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Octal Binary

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

BCD

Binary coded decimal (BCD) is a
weighted code that is commonly
used in digital systems when it is
necessary to show decimal
numbers such as in clock displays.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Binary BCD

0001
0001
0001
0001
0001
0001

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
0000
0001
0010
0011
0100
0101

The table illustrates the
difference between straight binary and
BCD. BCD represents each decimal
digit with a 4-bit code. Notice that the
codes 1010 through 1111 are not used in
BCD.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

BCD

You can think of BCD in terms of column weights in
groups of four bits. For an 8-bit BCD number, the column
weights are: 80 40 20 10 8 4 2 1.

What are the column weights for the BCD number
1000 0011 0101 1001?

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1

Note that you could add the column weights where there is
a 1 to obtain the decimal number. For this case:

8000 + 200 +100 + 40 + 10 + 8 +1 = 835910

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

BCD

Invalid Codes 1010, 1011, 1100, 1101, 1110, and 1111

Decimal to binary and Binary to decimal:

simply replace each decimal digit with the appropriate 4 bit
code, and vice versa.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

EXAMPLE 2-33
Convert each of the following decimal numbers to BCD:
(a) 35 (b) 98 (c) 170 (d) 2469

Solution

Related Problem Convert the decimal number 9673 to BCD.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

EXAMPLE 2-34
Convert each of the following BCD codes to decimal:
(a) 10000110 (b) 001101010001 (c) 1001010001110000

Solution

Related Problem Convert the BCD code
1000001000100 1110110 to decimal.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

BCD Addition

Step 1. Add the two BCD numbers, using the rules for
binary addition in Section 2-4.

Step 2. If a 4-bit sum is equal to or less than 9, it is a valid
BCD number.

Step 3. If a 4-bit sum is greater than 9, or if a carry out of
the 4-bit group is generated, it is an invalid result, Add 6
(0110) to the 4-bit sum in order to skip the six invalid
states and return the code to 8421. If a carry results when 6
is added. simply add the carry to the next 4-bit group.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

EXAMPLE 2-35
Add the following BCD numbers:
 (a) 0011 + 0100 (c) 10000110 + 000]0011
 (b) 00100011 + 00010101 (d) 010001010000 + 010000010111

The decimal number additions are shown for compalison.

(a) 0011 3 (b) 0010 0011 23
+ 0100 +4 + 0001 0101 + 15

0111 7 0011 1000 38

(c) 1000 0110 86 (d) 0100 0101 0000 450
+ 0001 0011 +13 + 0100 0001 0111 +417

1001 1001 99 1000 0110 0111 867

Solution

Related Problem Convert the BCD code
1000001000100 1110110 to decimal.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

EXAMPLE 2-36

Solution

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

BCD
A lab experiment in which BCD
is converted to decimal is shown.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Gray code

Gray code is an unweighted code
that has a single bit change between
one code word and the next in a
sequence. Gray code is used to
avoid problems in systems where an
error can occur if more than one bit
changes at a time.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Binary Gray code

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

EXAMPLE 2-37

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Gray code
A shaft encoder is a typical application. Three IR
emitter/detectors are used to encode the position of the shaft.
The encoder on the left uses binary and can have three bits
change together, creating a potential error. The encoder on the
right uses gray code and only 1-bit changes, eliminating
potential errors.

Binary sequence Gray code sequence

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

ASCII

ASCII is a code for alphanumeric characters and control
characters. In its original form, ASCII encoded 128
characters and symbols using 7-bits. The first 32 characters
are control characters, that are based on obsolete teletype
requirements, so these characters are generally assigned to
other functions in modern usage.

In 1981, IBM introduced extended ASCII, which is an 8-
bit code and increased the character set to 256. Other
extended sets (such as Unicode) have been introduced to
handle characters in languages other than English.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

3-5 ERROR DETECTION AND CORRECTION CODES

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Parity Method

The parity method is a method of error detection for
simple transmission errors involving one bit (or an odd
number of bits). A parity bit is an “extra” bit attached to
a group of bits to force the number of 1’s to be either
even (even parity) or odd (odd parity).

The ASCII character for “a” is 1100001 and for “A” is
1000001. What is the correct bit to append to make both of
these have odd parity?
The ASCII “a” has an odd number of bits that are equal to 1;
therefore the parity bit is 0. The ASCII “A” has an even
number of bits that are equal to 1; therefore the parity bit is 1.

3-5 ERROR DETECTION AND CORRECTION CODES

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

The Hamming Error Correction Code
 A single parity bit allows for the detection of single-bit errors in
a code word.
In order to correct a detected error, more information is
required because the position of the bit in error also must be
identified.
So more than one parity bit must be included in a group of bits
to be able to correct a detected error.
The Hamming code provides for single-error correction.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

P: Number of Parity Bits;
d: number of data bits : d=4

2P ≥ d+p+l

Let p = 2. Then 2P = 4 and d+p+l=4+2+1=7

Let p = 3. Then 2P = 8and d+p+l=4+3+1=8

So three parity bits are required to provide single-error
correction for four data bits.

The parity bits are located in the positions that are numbered
corresponding to ascending powers of two (1, 2, 4, 8, . . .), as
indicated;

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Assignment of Parity Bit Values:
Group P1: (001,011,101,111) = (1,3,5,7)
Group P2: (010,011,110,111) = (2,3,6,7)
Group P3: (100,101,110, 111) = (4,5,6,7)

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Summary

Cyclic Redundancy Check
The cyclic redundancy check (CRC) is an error detection method
that can detect multiple errors in larger blocks of data. At the
sending end, a checksum is appended to a block of data. At the
receiving end, the check sum is generated and compared to the sent
checksum. If the check sums are the same, no error is detected.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Other concepts

Consisting of numerals, letters, and other characters

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Selected Key Terms

Byte

Floating-point
number

Hexadecimal

Octal

BCD

A group of eight bits

A number representation based on scientific
notation in which the number consists of an
exponent and a mantissa.

A number system with a base of 16.

A number system with a base of 8.

Binary coded decimal; a digital code in which each
of the decimal digits, 0 through 9, is represented by
a group of four bits.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Selected Key Terms

Alphanumeric

ASCII

Parity

Cyclic
redundancy

check (CRC)

Consisting of numerals, letters, and other
characters

American Standard Code for Information
Interchange; the most widely used alphanumeric
code.

In relation to binary codes, the condition of
evenness or oddness in the number of 1s in a code
group.

A type of error detection code.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

1. For the binary number 1000, the weight of the column
with the 1 is

a. 4

b. 6

c. 8

d. 10

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

2. The 2’s complement of 1000 is

a. 0111

b. 1000

c. 1001

d. 1010

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

3. The fractional binary number 0.11 has a decimal value of

a. ¼

b. ½

c. ¾

d. none of the above

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

4. The hexadecimal number 2C has a decimal equivalent
value of

a. 14

b. 44

c. 64

d. none of the above

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

5. Assume that a floating point number is represented in
binary. If the sign bit is 1, the

a. number is negative

b. number is positive

c. exponent is negative

d. exponent is positive

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

6. When two positive signed numbers are added, the result
may be larger that the size of the original numbers, creating
overflow. This condition is indicated by

a. a change in the sign bit

b. a carry out of the sign position

c. a zero result

d. smoke

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

7. The number 1010 in BCD is

a. equal to decimal eight

b. equal to decimal ten

c. equal to decimal twelve

d. invalid

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

8. An example of an unweighted code is

a. binary

b. decimal

c. BCD

d. Gray code

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

9. An example of an alphanumeric code is

a. hexadecimal

b. ASCII

c. BCD

d. CRC

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

10. An example of an error detection method for
transmitted data is the

a. parity check

b. CRC

c. both of the above

d. none of the above

© 2008 Pearson Education

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Answers:

1. c

2. b

3. c

4. b

5. a

6. a

7. d

8. d

9. b

10. c

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

3-5 ZENER DIODES

A

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Zener Breakdown

The avalanche breakdown occurs

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Find

EXAMPLE 3-

Solution

Related Problem Calculate

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

SECTION 3-5 REVIEW

1. In.

BOOLEAN ALGEBRA AND
LOGIC SIMPLIFICATION

4-1 Boolean Operations and Expressions
4-2 Laws and Rules of Boolean Algebra
4-3 DeMorgan's Theorems
4-4 Boolean Analysis of Logic Circuits
4-5 Simplification Using Boolean Algebra
4-6 Standard Forms of Boolean Expressions
4-7 Boolean Expressions and Truth Tables
4-8 The Karnaugh Map
4-9 Karnaugh Map SOP Minimization
4-10 Karnaugh Map POS Minimization
4-11 Five-Variable Karnaugh Maps
4-12 VHDL (optional)

Digital System Application

CHAPTER OUTLINE

 1854, George Boole paper:“An Investigation of the Laws of Thought”
Founded the Mathematical rules of Logic and probabilities.

 Was formulated a convenient and systematic way of expressing and
analyzing of logic circuits. "logical algebra” (Boolean algebra),

 Claude Shannon Was the first to apply Boole's work to the analysis and
design of logic circuits. In 1938,

 Shannon wrote a thesis at MIT titled “A Symbolic Analysis of Relay and
Switching Circuits”

In this chapter:
 The laws and theorems of Boolean algebra and Their application to digital
 Define a circuit with a Boolean expression and evaluate its operation
 How to simplify logic circuits (Boolean algebra and Karnaugh maps)
 VHDL for programming logic devices is introduced.

Introduction

 Apply the basic laws and rules of Boolean algebra
 Apply DeMorgan's theorems to Boolean expressions
 Describe gate networks with Boolean expressions
 Evaluate Boolean expressions
 Simplify expressions by using the laws and rules of Boolean algebra
 Convert any Boolean expression into a sum-of-products (SOP) form
 Convert any Boolean expression into a product of-sums (POS) form
 Use a Karnaugh map to simplify Boolean expressions
 Use a Karnaugh map to simplify truth table functions
 Utilize "don't care" conditions to simplify logic functions
 Write a VHDL program for simple logic
 Apply Boolean algebra, the Karnaugh map method, and VHDL
to a system application

Chapter Objectives

4-1 BOOLEAN OPERATIONS AND EXPRESSIONS

Variable: is a symbol (usually an italic uppercase letter) used to

represent a logical quantity that can be 1 or a 0.

Complement: is the inverse of a variable and is indicate by a bar

over the variable (overbar).

Literal: is a variable or the complement of a variable.

Boolean Addition

The OR gate is a Boolean Adder.

Boolean addition is equivalent to the OR operation, In Boolean
algebra, a sum term is a sum of literals. In logic circuits, a sum term
is produced by an OR operation with no AND operations involved.

A sum term=1 when one or more of the literals in the term are 1.
A sum term=0 only if each of the literals is 0.

Determine the values of A, B, C, and D that make the sum term ܣ തܤ+ + ܥ + ഥܦ equal to 0.

EXAMPLE 4-1

Solution

Related Problem Determine the values of A and B that make the
sum term ̅ܣ + ܤ equal to 0.

For the sum term to be 0, each of the literals in the term must be 0.
Therefore, A = 0, ܤത = 0 so B = 1, C = 0, and ܦഥ = 0 so D = 1.

Boolean Multiplication

The AND gate is a Boolean multiplier.

In Boolean algebra, a product term is the product of literals.
In logic circuits, a product term is produced by an AND operation
without OR operations involved.

AB, Aܤത , ABC, and Aܤ	ഥ .D̅ܥ

A product term=1 only if each of the literals in the term is 1.
A product term=0 when one or more of the literals are 0.

Determine the values of A, B, C, and D that make the product termܤܣതܦܥഥ equal to 1.

EXAMPLE 4-2

Solution

Related Problem Determine the values of A and B that make the
product term ̅ܤܣത equal to 1.

For the product term to be 1, each of the literals in term must be 1.

SECTION 4-1 REVIEW

1. If A = 0, what does ܣ̅ equal?

2. Determine the values of A, B, and C that make the sum term̅ܣ+ B + ̅ܥ equal to 0.

3. Determine the values of A, B, and C that make the product termܤܣത̅ܥ equal to 1.

4-2 LAWS AND RULES OF BOOLEAN ALGEBRA

Commutative Law of addition A + B = B + A

Commutative Law of multiplication A.B = B.A

Associative Laws

Associative Law of multiplication A.(B.C) = (A.B).C

Associative Law of addition A+ (B + C) = (A + B) + C

Distributive Laws

Distributive of addition with respect to multiplication

A+ (B.C) = (A + B).(A + C)

Distributive of multiplication with respect to addition and factoring

A.(B + C) = A.B + A.C

 دقت كنيد كه بر خلاف قضاياي قبلي اين قضيه در جبر معمولي برقرار نيست و در جبر بول
.معتبر است

Rules of Boolean Algebra

Basic rules that are useful in manipulating and simplifying Boolean
expressions.

.اثباتند ھمه اين قواعد و قضايا با استفاده از جدول ارزش و تعاريف عملکرد گيتھا قابل

Rules of Boolean Algebra

عضو خنثی

Rules of Boolean Algebra

Rules of Boolean Algebra

Rule 10. A + AB = A

A + AB = A.1 + A. B Rule 4: A . 1 = A
= A.(1+B) factoring (distributive)
= A.l Rule 2: (1+ B) = 1
=A

Rules of Boolean Algebra

Rule 11. A + AB = A + B

A + AB = (A + AB) + AB

= (AA + AB) + AB

=AA +AB +AA +AB

= (A + A)(A + B)

= 1. (A + B) = A+B اين با استفاده از توزيع پذيري جمع نسبت به ضرب
)12قضيه (.قضيه را ساده تر مي توان اثبات نمود

Rules of Boolean Algebra

Rule 12. (A + B)(A + C) = A + BC توزيع پذيری جمع نسبت به ضرب

(A + B)(A + C) = AA + AC + AB + BC
= A + AC + AB + BC
= A(1 + C) + AB + BC
= A. 1 + AB + BC
= A(1 + B) + BC
= A. 1 + BC = A + BC

SECTION 4-2 REVIEW QUESTIONS

1. Apply the associative law of addition to the expression

A + (B + C + D).

2. Apply the distributive law to the expression A(B + C + D).

4-3 DEMORGAN'S THEOREMS

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important

part of Boolean algebra. In practicaJ terms. DeMorgan's theorems provide mathematical

verification of the equivalency of the NAND and negative-OR gates and the equivalency of

the NOR and negative-AND gates.

=

Can be used for more than two variable

EXAMPLE 4-5

EXAMPLE 4-6

The Boolean expression for an exclusive-OR gate is ̅ܣB + Aܤത . With this as a
starting point, use DeMorgan's theorems and any other rules or laws that are
applicable to develop an expression for the exclusive-NOR gate.

EXAMPLE 4-7

The final expression for the XNOR is ̅ܤܣത + AB. Note that this expression
equals 1 any time both variables are 0s or both variables are 1s.

SECTION 4-3 REVIEW QUESTIONS

1. Apply DeMorgan's theorems to the following expressions:

4-4 BOOLEAN ANALYSIS OF LOGIC CIRCUITS

Boolean algebra provides a concise way to express the operation of a

logic circuit formed by a combination of logic gates so that the output

can be determined for various combinations of input values.

Boolean Expression for a Logic Circuit

Begin at the left-most inputs and work toward the final output, writing the

expression for each gate.

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been

determined, a truth table that shows the output for all possible values

of the input variables can be developed. The procedure requires that

you evaluate the Boolean expression for all possible combinations of

values for the input variables.

For Putting the Results in Truth
Table format of previous example:

1) list the sixteen input variable
combinations of 1s and 0s in a binary
sequence.
2) place a 1 in the output column for
each combination of input variables
that was determined in the
evaluation.
3) Finally, place a 0 in the output
column for all other combinations of
input variables.

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1

SECTION 4-4 REVIEW QUESTIONS

1. Replace the AND gates with OR gates and the OR gate with an

AND gate in Figure 4-16 and determine the Boolean

expression for the output.

2. Construct a truth table for the circuit in Question 1.

 نه(هم معادل بدهند يكسان خروجي يكسان وروديهاي ازاي به كه مداري دو هر
.بود خواهند)مساوي

:مدار كه داريم انتظار باشد كمتر عناصر تعداد چه هر معادل مدار دو بين در
باشد ارزانتر
باشد كمتري تاخير داراي
باشد راحتتر آن يابي عيب.
و كند اشغال را برد از كمتري ححم ...

4-5 SIMPLIFICATION USING BOOLEAN ALGEBRA

4-5 SIMPLIFICATION USING BOOLEAN ALGEBRA

Many times in the application of Boolean algebra, you have to reduce

a particular expression to its simplest form or change its form to a

more convenient one to implement the expression most efficiently.

The approach taken in this section is to use the basic laws, rules, and

theorems of Boolean algebra to manipulate and simplify an

expression. This method depends on a thorough knowledge of

Boolean algebra and considerable practice in its application, not to

mention a little ingenuity and cleverness.

At the first we try to using Demorgan’s theorems and distribution and

any other needed rules to convert Boolean expressions to the form

that only include variables or literals

Using Boolean algebra techniques, simplify this expression:
AB + A(B + C) + B(B + C)

EXAMPLE 4-8

Solution

Related Problem Simplify the Boolean expression:

AB + AB + AC + BB + BC distributive
AB + AB + AC + B + BC BB=B
AB + AC + B + BC AB+AB=AB
AB + AC + B (B + BC = B)
B + AC AB + B = B

Simplify the following Boolean expression:

EXAMPLE 4-9

Solution

Related Problem Simplify the Boolean expression

[AB(C + BD) + AB]C

1)

2)

3)

4)

5)

6)

7)

8) =

Simplify the following Boolean expression:

EXAMPLE 4-10

Solution

Related Problem Simplify the Boolean expression

Simplify the following Boolean expression:

EXAMPLE 4-11

Solution

Related Problem Simplify the Boolean expression

SECTION 4-5 REVIEW QUESTIONS

1. Simplify the following Boolean expressions if possible:

2. Implement each expression in Question 1 as originally stated

with the appropriate logic gates. Then implement the

simplified expression, and compare the number of gates.

All Boolean expressions, regardless of their form, can be converted
into either of two standard forms: the sum-of-products form or the
product-of-sums form. Standardization makes the evaluation,
simplification, and implementation of Boolean expressions much more
systematic and easier.

4-6 STANDARD FORMS OF BOOLEAN EXPRESSIONS

Sum-Of-Products (SOP).

A product term was defined as a term consisting of the product of
literals (variables or their complements). When two or more product
terms are summed by Boolean addition. the resulting expression is a
sum-of-products (SOP).

A + BCD

Domain of a Boolean Expression

The domain of a general Boolean expression is the set of variables
contained in the expression in either complemented or
uncomplemented form.
The domain of AB + ABC is the set of variables A, B, C and the
domain of the expression ABC + CDE + BCD is the set of variables A,
B, C, D, E.

AND/OR Implementation of an SOP Expression

Simplification of any Boolean expressions can results an SOP
expression.
Any SOP expression can be implemented by two level AND-OR logic.

NAND/NAND Implementation of an SOP Expression

For converting any AND-OR implementation to NAND-NAND we
need only replace any AND-OR gates with NAND gates. Also we can
replace any NOT gate with a two input NAND gate that its inputs tied
together.

Convert each of the following Boolean expressions to SOP form.

(a) AB + B(CD + EF) (b) (A + B)(B + C + D) (c) (A + B) + C

SOLUTION
(a) AB + B(CD + EF) = AB + BCD + BEF
(b) (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD

(c) (A + B) + C = (A + B)C = (A + B)C = AC + BC

Related Problem Convert ABC + (A + B)(B + C + AB) to SOP form.

EXAMPLE 4-12

The Standard SOP Form (CANONIC)

A standard SOP expression is one in which all the variables in the
domain appear in each product term in the expression. This product
term called minterm.
Standard SOP expressions are important in constructing truth tables,
and in the Karnaugh map simplification method.

Converting Product Terms to Standard SOP
Step 1. Multiply each nonstandard product term by a term made up of
the sum of a missing variable and its complement. This results in two
product terms. As you know, you can multiply anything by I without
changing its value.

Step 2. Repeat Step 1 until all resulting product terms contain all
variables in the domain in either complemented or uncomplemented
form.

Convert the following Boolean expression into standard SOP form:X = ܥതܤܣ + തܤܣ̅ + ܦ̅ܥܤܣ
SOLUTION
The domain of this SOP expression is A, B, C, D. ܤܣതܥ = ܥതܤܣ ܦ + ഥܦ = ܦܥതܤܣ + തܤܣഥ̅ܦܥതܤܣ = തܤܣ̅ ܥ + ̅ܥ ܦ + ഥܦ = ܦܥതܤܣ̅ + ܦ̅ܥതܤܣ̅ + ഥܦܥതܤܣ̅ + ഥܦ̅ܥതܤܣ̅
At the end:ܤܣതܦܥ + ഥܦܥതܤܣ + ܦܥതܤܣ̅ + ܦ̅ܥതܤܣ̅ + ഥܦܥതܤܣ̅ + ഥܦ̅ܥതܤܣ̅ + ܦ̅ܥܤܣ
Related Problem Convert the following expression to standard SOP
form.

EXAMPLE 4-13

Binary Representation of a Standard Product Term

A standard product term is equal to 1 for only one combination of
variable values.

In this case, minterm has a binary value of 1010 (decimal ten).

An SOP expression is equal to 1 only if one or more of the minterms
in the expression is equal to 1.

Determine the binary values for which the following standard SOP
expression is equal to 1:

SOLUTION

The expression equals 1 when any or all of the three product terms is 1.
respective minterm values are 15, 9, 0

Related Problem Determine the binary values for which the following
SOP expression is equal to 1. Is this a standard SOP expression?

EXAMPLE 4-14

The Product-of-Sums (POS) Form

A sum term was defined in Section 4-1 as a term consisting of the sum
(Boolean addition) of literals (variables or their complements). When
two or more sum terms are multiplied, the resulting expression is a
product-of-sums (POS).

Implementation of a POS Expression: Implementing a POS
expression simply requires ANDing the outputs of two or more OR gates.

The Standard POS Form

A standard POS expression is one in which all the variables in the
domain appear in each sum term in the expression. Each sum terms in
a standard POS expression is called a Maxterm.

Non standard:

Standard:

Converting a Sum Term to Standard POS :
Step 1. Add to each nonstandard product term a term made up of the
product of the missing variable and its complement. This results in two
sum terms.

Step 2. Apply rule 12 distribution: A + BC = (A + B)(A + C)

Step 3. Repeat Step 1 until all resulting sum terms contain all variables in
the domain in either complemented or uncomplemented form.

Convert the following Boolean expression into standard POS form:

SOLUTION

Related Problem Determine the standard POS expressions for:

EXAMPLE 4-15

Binary Representation of a Standard Sum Term (Maxterm)

A standard sum term is equal to 0 tor only one combination of variable
values, and is 1 for all other combinations of values for the variables.

EXAMPLE 4-16
Determine the binary values of the variables for which the following
standard POS expression is equal to 0:

The POS expression equals 0 when any of the sum terms equals 0. Maxterm
values that make the output to 0 are 0, 6, 15.
Related Problem Determine the binary values for which the following POS
expression is equal to 0. Is this a standard POS expression?

SOLUTION

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP
expression are not present in the equivalent standard POS expression.
Therefore, to convert from standard SOP to standard POS, the
following steps are taken:

Step 1. Evaluate each product term in the SOP expression. That is,
determine the binary numbers that represent the product terms.

Step 2. Determine all of the binary numbers not included in the
evaluation in Step I.

Step 3. Write the equivalent sum term for each binary number from
Step 2 and express in POS form.

Using a similar procedure, you can go from POS to SOP.

Convert the following SOP expression to an equivalent POS
expression:

SOLUTION

Related Problem Verify that the SOP and POS expressions in this
example are equivalent by substituting binary values into each.

EXAMPLE 4-17

The evaluation is as follows: 000 + 010 + 011 + 101 + 111
Since there are three variables in the domain of this expression. there
are a total of 8 possible combinations. The SOP expression contains
five of these combinations, so the POS must contain the other three
which are 001,100, and 110.
Remember, these are the binary values that make the sum term O. The
equivalent POS expression is:

SECTION 4-6 REVIEW

1. Identify each of the following expressions as SOP, standard

SOP, POS, or standard POS:

2. Convert each SOP expression in Question 1 to standard form.

3. Convert each POS expression in Question 1 to standard form.

4-7 BOOLEAN EXPRESSIONS AND TRUTH TABLES

All standard Boolean expressions can be easily converted into truth
table format using binary values for each term (minterms or
Maxterms) in the expression. The truth table is a common way of
presenting, in a concise format, the logical operation of a circuit.

Also. standard SOP or POS expressions can be determined from a
truth table.

Converting SOP Expressions to Truth Table Format

1- Constructing a truth table and list all possible combinations of binary
values of the variables in the expression.

2- Convert the SOP expression to standard form if it is not already.

3- Place a 1 in the output column (X) for each binary value that
makes the standard SOP expression a 1 and place a 0 for all the remaining
binary values.

Develop a truth table for the standard SOP expression

SOLUTION

Related Problem Create a truth table for the standard SOP
expression

EXAMPLE 4-18

Minterms that make 1
in out put are
001,100,111 (m1, m4,
m7)

Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to 0 only if at least one of the
sum terms (Maxterms) is equal to 0.

1- List all the possible combinations of binary values of the variables
just as was done for the POS expression.

2- Convert the POS expression to standard form if it is not already.

3- Place a 0 in the output column (X) for each binary value that makes
the expression a 0 and place a 1 for all the remaining binary values.

Determine the truth table for the following standard POS expression:

SOLUTION

Related Problem Develop a truth table for the following standard
POS expression:

EXAMPLE 4-19

Maxterms that make 0
in output are 000,
010, 011, 101, 110
(M0,M2,M3,M5,M6)

Determining Standard Expressions from a Truth Table

SOP:
1- List the binary values of the input variables that make output=1.
2- Convert each binary value to the corresponding product term by
replacing each 1 with the corresponding variable and each 0 with the
corresponding variable complement.
3- Use OR operation for combining previous steps minterms.

POS:
1- List the binary values of the input variables that make output=0.
2- Convert each binary value to the corresponding sum term by
replacing each 0 with the corresponding variable and each 1 with the
corresponding variable complement.
3- Use AND operation for combining previous steps Maxterms.

From the truth table, determine the standard SOP expression and the
equivalent standard POS expression.

SOLUTION

So SOP expression is:

EXAMPLE 4-20

miterms that make 1
in output are:

So POS expression is:

EXAMPLE 4-19

Maxterms that make 0
in output are:

SECTION 4-7 REVIEW

1. If a certain Boolean expression has a domain of five variables,

how many binary values will be in its truth table?

2. In a certain truth table, the output is a 1 for the binary value

0110. Convert this binary value to the corresponding product

term using variables W, X, Y, and Z.

3. In a certain truth table, the output is a 0 for the binary value

1100. Convert this binary value to the corresponding sum term

using variables W, X, Y, and Z.

4-8 THE KARNAUGH MAP
:است مشكلات اين داراي جبري سازي ساده
يا ستا شدني ساده عبارت اساسا آيا كه نيست تشخيص قابل اوليه عبارت روي از

خير
كنيم طي بايد را مراحلي چه نيست مشخص و است مشخص روش يك فاقد.
است وابسته شخص تجربه و مهارت هوش، به سازي ساده.
خير يا ودش مي تر ساده حاصله عبارت آيا كه گفت قطعيت با توان نمي نيز انتها در.

 با يكلوسك مك كوئين روش و كارنو جدول نظير سيستماتيك روشهاي مقابل در
 كارب درست را روش كاربران آنكه فرض با و نيستند مواجه فوق مشكلات از هيچيك

.رسيد خواهند يكسان پيچيدگي سطح با جوابهايي به حتما برند
 كثرحدا كه دستي سيستماتيك روش يك عنوان به كارنو جدول روش با ما اينجا در

.شد خواهيم آشنا است استفاده قابل متغير 5 با مدارهايي براي

.

THE KARNAUGH MAP

 Another representation of truth table.
 Instead of organizing into columns and rows , the Karnaugh map

is an array of cells in which each cell represents a binary value of
the input variables. (midterm or maxterm value)

 The cells are arranged in a way that the position of 1 or 0 in map
inform us how to combine the minterms or maxterms for
simplifing expressions.

 The number of cells in a Karnaugh map is equal to the total
number of possible input variable combinations as is the number of
rows in a truth table.

THE KARNAUGH MAP

3 variables

4 variables

Row & column numbering is in gray
code so any horizontal or vertical
adjacent cell differs only in one
parameter.
Any cell can uniquely related to a
minterm or maxterm

0 1

2 3

6 7

54

0 1 23

4 5 67

12 13 1415

8 9 11 10

CELL ADJUCANCY

 اينبنابر و شوند مي ناميده مجاور دارند تفاوت هم با متغير يك در تنها كه سلولي دو هر
باشند داشته مشترك ضلع يك حداقل كه سلولي دو هر
پائيني با بالايي سطر متناظر عناصر
ستون راسترين با ستون ترين چپ در متناظر عناصر

SECTION 4-8 REVIEW

1. In a 3-variable Karnaugh map, what is the binary value for the

cell in each of the following locations:

(a) upper left corner (b) lower right corner

(c) lower left corner (d) upper right corner

2. What is the standard product term for each cell in Question 1 for

variables X, Y, and Z?

3. Repeat Question 1 for a 4-variable map.

4. Repeat Question 2 for a 4-variable map using variables W, X, Y,

and Z.

4-9 KARNAUGH MAP SOP MINIMIZATION
:SOP سازي ساده براي كارنو جدول در جبري عبارت نگاشتن براي

.آوريم مي در SOP استاندارد بفرم را جبري عبارت -1
 در ها خانه بقيه .دهيم مي قرار را 1 عدد مينترمها با متناظر سلولهاي در مربوطه كارنو جدول در -2

.نيست آنها نگارش به نيازي ولي هستند 0 واقع
 مداري قصد كه هنگامي ولي نيست مهم سلولها شماره دانستن معمولا جبري عبارت انتقال براي

.دهد مي افزايش را ما سرعت برويم كارنو جدول به ارزش جدول از مستقيما

Related Problem: Map the standard SOP expression ̅ܣBC +	ܤܣത	ܥ+ ̅ܥതܤܣ on a Karnaugh map.

EXAMPLE 4-21

Map the following standard SOP expression on a Karnaugh map:

1

1

1 1

solution: ̅ܣ ܣത̅ܤ തܤ	ܣܤ	ܣܤ
̅ܥ ܥ

001 010ܥതܤܣ̅ 110̅ܥBܣ̅ 111̅ܥBܣ BCܣ

Related Problem: Map the standard SOP expression ̅ܣBCܦഥ ഥܦܥܤܣ	+ ܦ̅ܥܤܣ+ + ABCD on a Karnaugh map.

EXAMPLE 4-22

Map the following standard SOP expression on a Karnaugh map:

solution:

ܣ̅ ܣത̅ܤ തܤ	ܣܤ	ܣܤ
ഥܦ	̅ܥ 0011ܦ	ܥ 0100ܦܥതܤܣ̅ 1101ܦܥBܣ̅ D1111̅ܥBܣ BCDܣ

1100 ABܦܥ
0001 ܦ̅ܥതܤܣ̅
1010 Aܤതܦܥഥ

ഥD	ܥ C ܦഥ
1 1

1

1 1 1

1

Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a

Karnaugh map.
ALGEBRAIC METHOD

A+̅ܣBC =
= A(̅ܥ + (ത+Bܤ)(ܥ + ==BCܣ̅ തܤ̅ܥܣ + +ܤ̅ܥܣ തܤܥܣ + ܤܥܣ + ܥܤܣ̅
NUMERICAL EXPANSION A BC

1 00 ̅ܥതܤܣ
1 01 ܥതܤܣ
1 10 ̅ܥܤܣ
1 11 ܥܤܣ

1 1

1 1

ܣ̅ ܣത̅ܤ തܤ	ܣܤ	ܣܤ
̅ܥ ܥ

1

11

Related Problem: Map the SOP expression BC + ̅̅ܥܣ on a Karnaugh
map.

EXAMPLE 4-23

Map the following nonstandard SOP expression on a Karnaugh map:

solution:

Related Problem: Map the SOP expression A + ܦ̅ܥ + ഥܦܥܣ + ഥܦܥܤܣ̅
on a Karnaugh map.

EXAMPLE 4-24

Map the following nonstandard SOP expression on a Karnaugh map:ܤത̅ܥ+ A̅ܥ + ̅ܥܤܣ + ഥܦܥതܤܣ ܦ̅ܥതܤܣ̅	+ + ܦܥതܤܣ
solution:

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible

terms with the fewest possible variables is called minimization.

After an SOP expression has been mapped, a minimum SOP expression is

obtained by grouping the Is and determining the minimum SOP expression

from the map.

1. A group must contain either 1, 2, 4, 8, or 16 cells
2. Each cell in a group must be adjacent to one or more cells in that same

group.
3. Always include the largest possible number of 1’s in a group in
accordance with rule 1.
4. Each 1 on the map must be included in at least one group. The 1’s
already in a group can be included in another group as long as the
overlapping groups include noncommon 1’s.

EXAMPLE 4-25

Group the 1’s in each of the below Karnaugh maps.

solution:

EXAMPLE 4-25

Group the 1’s in each of the below Karnaugh maps.

solution:

Related Problem: Determine if there are other ways to group the 1’s in
Figure 4-30 to obtain a minimum number of maximum groupings.

Determining the Minimum SOP Expression from the Map

1. Group the cells that have 1’s. Each group of cells containing 1’s creates

one product term composed of all comone and unchanged variables.

2. Determine the minimum product term for each group.

3. When all the minimum product terms are derived from the Karnaugh

map, they are summed to form the minimum SOP expression.

EXAMPLE 4-26

Determine the product terms for the Karnaugh map in Figure 4-31
and write the resulting minimum SOP expression.

solution:

Related Problem: For the Karnaugh map in Figure 4-31, add a 1 in the
lower right cell (1010) and detennine the resulting SOP expression.

EXAMPLE 4-27

Detelmine the product telms for each of the Karnaugh maps in Figure
4-32 and write the resulting minimum SOP expression.

solution:

Related Problem: For the Kamaugh map in Figure 4-32(d), add a I in
the 0111 cell and determine the resulting SOP expression.

EXAMPLE 4-28

Use a Kamaugh map to minimize the following standard SOP
expression:

solution:

Related Problem: Use a Karnaugh map to simplify the following
standard SOP expression:ܺ തܻܼ + ܻܼܺ̅ + തܻܼܺ + തܻܼܺ̅ + ܺ തܻܼ̅ + ܻܼܺ

1

1

1

1

1

ܥതܤܣ + ܥܤܣ̅ + ܥതܤܣ̅ + ̅ܥതܤܣ̅ + ̅ܥതܤܣ
101 011 001 000 100

EXAMPLE 4-29
Use a Kamaugh map to minimize the following standard SOP
expression:

solution:

Related Problem: Use a Karnaugh map to simplify the following
standard SOP expression:ഥܹ തܺ തܻܼ̅ + ܹ തܻܼܺ +ܹ തܺ തܻܼ̅ +ܹ തܺ തܻܼ + ഥܹ ܻܼ

Mapping Directly from a Truth Table

Don’t Care Condition

Sometimes a situation arises in which some input variable combinations are

not allowed. (ie BCD). Since these un allowed states will never occur in an

application involving the BCD code, they can be treated as "don't care"

terms with respect to their effect on the output. That is, for these "don't

care" terms either a 1 or a 0 may be assigned to the output.

The "don't care" terms can be used to advantage on the Karnaugh map. for

For each "don't care" term, an X is placed in the cell. When grouping the

1’s, the X’s can be treated as 1’s to make a larger grouping or as 0’s if they

cannot be used to advantage.

The larger a group, the simpler the resulting term will be.

Don’t Care Condition

"don't cares" are not used as 1’s:

AB C + ABCD

"don't cares" are used as 1’s:

A + BCD. Simpler expression

SECTION 4-9 REVIEW

1. Layout Karnaugh maps for three and four variables.

2. Group the 1’s and write the simplified SOP expression for the

Karnaugh map in Figure 4-25.

3. Write the original standard SOP expressions for each of the

Karnaugh maps in Figure 4-32.

4-9 KARNAUGH MAP POS MINIMIZATION

:POS سازي ساده براي كارنو جدول در جبري عبارت نگاشتن براي
.آوريم مي در POS استاندارد بفرم را جبري عبارت -1
 .دهيم مي قرار را 0 عدد ماكسترمها با متناظر سلولهاي در مربوطه كارنو جدول در -2

.نيست آنها نمايش به نيازي ولي هستند 1 واقع در ها خانه بقيه

EXAMPLE 4-30
Map the following standard POS expression on a Karnaugh map:

solution:

Related Problem: Map the following standard POS expression on a
Karnaugh map:

Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same

as for an SOP expression except that you group 0’s to produce

minimum sum terms instead of grouping 1’s to produce minimum

product terms. The rules for grouping the 0’s are the same as those

for grouping the 1’s.

EXAMPLE 4-31
Use a Karnaugh map to minimize the following standard POS
expression:

solution:

Related Problem: Use a Karnaugh map to simplify the following
standard POS expression:

Maxterms: 000, 001, 010, 011, 110

Minterms: 111, 101, 100

EXAMPLE 4-32
Use a Karnaugh map to minimize the following POS expression:

solution:

Related Problem: Use a Karnaugh map to simplify the following POS
expression:

Maxterms: 0000, 1000, 0010, 1001,
1000, 1100

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression is mapped, it can easily be converted to the

equivalent SOP form directly from the Karnaugh map. Also, given a

mapped SOP expression, an equivalent POS expression can be

derived directly from the map. This provides a good way to compare

both minimum forms of an expression to determine if one of them

can be implemented with fewer gates than the other.

For a POS expression, all the cells that do not contain 0’s contain 1’s,

from which the SOP expression is derived. Likewise, for an SOP

expression, all the cells that do not contain 1’s contain 0’s, from

which the POS expression is derived.

EXAMPLE 4-33
Using a Karnaugh map, convert the following standard POS expression
into a minimum POS expression, a standard SOP expression, and a
minimum SOP expression.

solution:

EXAMPLE 4-33

Related Problem: Use a Karnaugh map to convert the following
expression to minimum SOP form:

SECTION 4-10 REVIEW

1. What is the difference in mapping a POS expression and an SOP

expression?

2. What is the standard sum term expressed with variables A, B, C,

and D for a 0 in cell 1011 of the Kamaugh map?

3. What is the standard product term expressed with variables A,

B, C, and D for a 1 in cell 0010 of the Karnaugh map?

SECTION 4-10 REVIEW

1. Why does as-variable Karnaugh map require 32 cells?

2. What is the expression represented by a 5-variable Karnaugh

map in which each cell contains a 1?

EXAMPLE 4-30
Map the following standard POS expression on a Karnaugh map:

solution:

Related Problem: Use a Karnaugh map to simplify the following
standard SOP expression:ഥܹ തܺ തܻܼ̅ + ܹ തܻܼܺ +ܹ തܺ തܻܼ̅ +ܹ തܺ തܻܼ + ഥܹ ܻܼ

0000
0

0001
1

0011
3

0010
2

0100
4

0101
5

0111
7

0110
6

1100
12

1101
13

1111
15

1110
14

1000
8

1001
9

1011
11

1010
10

0 0

0 0

0

X=((A+B)+C)+((D+E)+F)

Page 281

Page 287

Page 293

FUNCTIONS OF
COMBINATIONAL LOGIC

1. Basic Adders
2. Parallel Binary Adders
3. Ripple Carry versus Look-Ahead Carry Adders
4. Comparators
5. Decoders
6. Encoders
7. Code Converters
8. Multiplexers (Data Selectors)
9. Demultiplexers
10. Parity Generators/Checkers
11. Troubleshooting
12. Digital System Application

CHAPTER OUTLINE

 Distinguish between half-adders and full-adders
 . Use full-adders to implement multibit parallel binary adders
 Explain the differences between ripple carry and look-ahead
 carry parallel adders
 . Use the magnitude comparator to determine the relationship
 between two binary numbers and use cascaded comparators to
 handle the comparison of larger numbers
 Implement a basic binary decoder
 Use BCD-to-7 -segment decoders in display systems
 Apply a decimal-to-BCD priority encoder in a simple keyboard
 application
 Convert from binary to Gray code, and Gray code to binary by
 using logic devices
 Apply multiplexers in data selection, multiplexed displays, logic

Chapter Objectives

6-1 BASIC ADDERS

Adders are important in computers and also in other types of digital

systems in which numerical data are processed. An understanding of

the basic adder operation is fundamental to the study of digital

systems. In this section, the half-adder and the full adder are

introduced.

HALF ADDER

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

FULL ADDER

FULL ADDER

EXAMPLE 6-1

For each of the three full-adders in Figure 6-6, determine the outputs
for the inputs shown.

SECTION 6-1 REVIEW

1. Determine the sum (Ʃ) and the output carry (Cout of a half-adder

for each set of input bits:

(a) 01 (b) 00 (c) 10 (d) 11

2. A full-adder has Cin = 1. What are the sum (Ʃ) and the output

carry Cout when A = 1 and B = 1?

6-2 PARALLEL BINARY ADDERS

For n bits addition we need n-1 full

adders and 1 half adder but in IC

package there are n full adder?

EXAMPLE 6-2

Determine the sum generated by the 3-bit parallel adder in Figure 6-8
and show the intermediate carries when the binary numbers 101 and
011 are being added.

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is

implemented with four full-adder stages. The Carry output of each

adder is connected to the carry input of the next higher-order adder as

indicated. These are called internal carries.

Four-Bit Parallel Adders

In terms of the method used to handle carries in a parallel adder. there

are two types: the ripple carry adder and the carry look-ahead

adder.

EXAMPLE 6-3

Use the 4-bit parallel adder truth table (Table 6-3) to find the sum and
output carry for the addition of the following two 4-bit numbers if the
input carry (Cn -1) is 0:

A4A342A1 = 1100 and B4B3B2B1 = 1100

THE 74LS283 4-BIT PARALLEL ADDER

This device may be available in other TTL or CMOS families. Check
the Texas Instruments website at www.ti.com

THE 74LS283 4-BIT PARALLEL ADDER

IC Data Sheet Characteristics Recall that logic gates have one
specified propagation delay time, tp , from an input to the output. For
IC logic, there may be several different specifications for tp. The 4-bit
parallel adder has the four tp specifications shown in Figure 6-11.
which is part of a 74LS283 data sheet.

ADDER EXPANSION

process is known as cascading.

EXAMPLE 6-4

Show how two 74LS283 adders can be connected to form an 8-bit
parallel adder?
Show output bits for the following 8-bit input numbers:

A8A7A6A5A4A3A2A1 = 10111001 and B8B7B6B5B4B3B2B1 = 10011110

An Application
A simple voting
system that can be
used to
simultaneously
provide the number
of "yes" votes and the
number of "no" votes
for immediately
determining opinions.

SECTION 6-2 REVIEW QUESTIONS

1. Two 4-bit numbers (1101 and 1011) are applied to a 4-bit

parallel adder. The input carry is 1. Determine the sum Ʃ and the

output carry.

1. 2. How many 74LS283 adders would be required to add two

binary numbers each representing decimal numbers up through

100010?

6-3

A ripple carry adder is one in which the carry output of each full-adder is

connected to the carry input of the next higher-order stage.

Carry propagation delay: The time from the application of the input carry

until the output carry occurs, assuming other inputs are already present.

RIPPLE CARRY Vs. LOOK-AHEAD CARRY ADDERS

The look-Ahead Carry Adder
The speed with which an addition can be performed is limited by the time
required for the carries to propagate, or ripple, through all the stages of a
parallel adder. One method of speeding up the addition process by
eliminating this ripple carry delay is called look-ahead carry addition.

C1 = A0 B0 + (A0 + B0).C0 = f1 (A0 ,B0 , C0)

C2 = A1 B1 + (A1 + B1).C1 = f2 (A0 ,B0 ,A1 ,B1 , C0)

C3 = A2 B2 + (A2 + B2).C2 = f2 (A0 ,B0 ,A1 ,B1 , A2 ,B2 , C0)

C4 = A3 B3 + (A3 + B3).C3 = f2 (A0 ,B0 ,A1 ,B1 , A2 ,B2 ,A3 ,B3 , C0)

The look-Ahead Carry Adder

Combination look-Ahead and Ripple Carry Adders in cascaded adders

بقه و اين مدار حداکثر در دو سطح قابل ساخت است و نيازی نيست تا پاسخ ھر ط
منتظر رقم نقلی طبقه قبل بماند

6-4 COMPARATORS

The basic function of a comparator is to compare the magnitudes of

two binary quantities to determine the relationship of those quantities.

In its simplest form, a comparator circuit determines whether two

numbers are equal.

Equality

Equality

Can be expanded to any number of bits

Apply each of the following sets of binary numbers to the
comparator inputs in Figure 6-21, and determine the output by
following the logic levels through the circuit.
(a) 10 and 10 (b) 11 and 10

EXAMPLE 6-5

Related Problem Repeat the process for binary inputs of 01 and 10.

INEQULITY

1. If A3 = I and B3 = 0, number A is greater

than number B.

2. If A3 = 0 and B3 =1 number A is less than

number B.

3. If A3 = B 3 , then you must examine the

next lower bit position for an inequality.

Determine the A = B, A > B, and A < B outputs for the input
numbers shown on the comparator.

EXAMPLE 6-6

Related Problem What are the comparator outputs when A342AlA0=
1001 and B3B2BlB0 = LOW?

1
0
0

THE 74HC85 4-BIT MAGNITUDE COMPARATOR

The 74HC85 is a comparator, also available in other IC families. This
device has all the inputs and outputs of the generalized comparator
previously discussed and, in addition, has three cascading inputs:
A<B, A = B, A>B.

Use 74HC85 comparators to compare the magnitudes of two 8-bit
numbers. Show the comparators with proper interconnections.

EXAMPLE 6-7

Related Problem Expand the circuit to a 16-bit comparator.

SECTION 6-4 REVIEW QUESTIONS

1. The binary numbers A = 1011 and B = 1010 are applied to the

inputs of a 74HC85. Determine the outputs.

2. The binary numbers A = 11001011 and B = 11010100 are

applied to the 8-bit comparator in previous example. Determine the

states of output pins 5, 6, and 7 on each 74HC85.

COMPUTER NOTE

Addition is performed by computers on two numbers at a time,

called operands. The source operand is a number that is to be

added to an existing number called the destination operand,

which is held in an ALU register, such as the accumulator. The

sum of the two numbers is then stored back in the accumulator.

Addition is performed on integer numbers or floating-point

numbers using ADD or FADD instructions respectively.

COMPUTER NOTE

In a computer, the cache is a very fast intermediate memory

between the central processing unit (CPU) and the slower main

memory. The CPU requests data by sending out its address

(unique location) in memory. Part of this address is called a tag.

The tag address comparator compares the tag from the CPU with

the tag from the cache directory. If the two agree, the addressed

data is already in the cache and is retrieved very quickly. If the

tags disagree, the data must be retrieved from the main memory

at a much slower rate.

HANDS ON TIPS

Most CMOS devices contain protection circuitry to guard against

damage from high static voltages or electric fields. However,

precautions must be taken to avoid applications of any voltages

higher than maximum rated voltages. For proper operation, input

and output voltages should be between ground and Vcc . Also,

remember that unused inputs must always be connected to an

appropriate logic level (ground or Vcc. Unused outputs may be left

open.

6-5 DECODER

A decoder is a digital circuit that detects the presence of a specified

combination of bits (code) on its inputs and indicates the presence of

that code by a specified output level. In its general form, a decoder

has n input lines to handle n bits and from one to 2n output lines to

indicate the presence of one or more n-bit combinations. In this

section, several decoders are introduced. The basic principles can be

extended to other types of decoders.

The Basic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the
inputs of a digital circuit.
In the representation of a binnry number or other weighted code in this
book, the LSB is the right-most bit in a horizontal arrangement and the
top most bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used, a LOW output will indicate the presence of
the proper binary code.

The 4-Bit Decoder

In order to decode all possible combinations of four bits, 16 decoding
gates are required (24 = 16). This type of decoder is commonly called
either a 4-line-to-16-line decoder or a 1-of-16 decoder

 NAND گيت يک خروجی ھر ازای به
 ورودی کد آن ازای به تنھا که دارد وجود
 که صورتی در .شد خواھد صفر خاص

 گيتھای جای به باشند 1 با فعال خروجيھا
NAND گيت AND رفت خواھد بکار.
 N2 و ورودی N دارای باينری دکودر
.باشد می خروجی

Determine the logic required to decode the binary number 1011 by
producing a HIGH level on the output.

EXAMPLE 6-8

Related Problem Develop the logic required to detect the binary
code 10010 and produce an active LOW output.

THE 74HC154 1-0F-16 DECODER

In order to decode all possible combinations of four bits, 16 decoding
gates are required (24 = 16). This type of decoder is commonly called
either a 4-line-to-16-line decoder or a 1-of-16 decoder

COMPUTER NOTE
An instruction tells the computer what operation to perform.

Instructions are in machine code (1’s and 0’s) and, in order for the

computer to carry out an instruction, the instruction must be

decoded. Instruction decoding is one of the steps in instruction

pipelining, which are as follows:

Instruction is read from the memory (instruction fetch),

instruction is decoded, operand(s) is (are) read from memory

(operand fetch), instruction is executed, and result is written back

to memory. Basically, pipelining allows the next instruction to

begin processing before the current one is completed.

A certain application requires that a 5-bit number be decoded. Use
74HCl54 decoders to implement the logic. The binary number is
represented by the format A4A342A1A0.

EXAMPLE 6-9

Related Problem Simplify the Boolean expression

An Application

Decoders are used in many
types of applications. One
example is in computers
for input/output selection.
Each I/O port has a
number, called an address,
which uniquely identifies
it. When the computer
wants to communicate
with a particular device, it
issues the appropriate
address code for the I/O
port to which that
particular device is
connected. This binary port
address is decoded and the
appropriate decoder output
is activated to enable the
I/O port.

The BCD-to-Decimal Decoder

4-line-to-10- line decoder or a 1-of- 10 decoder. Implemented with ten NAND gates.

The 74HC42 is an integrated circuit BCD-to-decimal decoder. show
the output waveforms.

EXAMPLE 6-10

Related Problem Simplify the Boolean expression

The BCD-to-7-Segment Decoder

LCD Displays liquid
crystal display. LCDs
operate by polarizing light
so that a nonactivated
segment reflects incident
light and thus appears
invisible against its
background. An activated
segment does not reflect
incident light and thus
appears dark. LCDs
consume much less power
than LEDs but cannot be
seen in the dark, while
LEDs can.

LED Display

DP

The BCD-to-7-Segment Decoder

 digital system applicationحتما
 مطالعه شود به عنوان يک مثال 4فصل

کامل از مراحل طراحی مدار داخلی اين
دکودر مرور شده و ممکن است مسئله
.مشابھی در امتحان ميان ترم ارائه شود

THE 74LS47 BCD-TO-7-SEGMENT DECODER/DRIVER

Lamp Test When a LOW is applied to the ܶܮ input and the is	ܱܤܴ/ܫܤ
HIGH, all of the 7 segments in the display are turned on.ࡵ࡮ࡾ (ripple blanking input), and ࡻ࡮ࡾ/ࡵ࡮ (blanking input/ripple
blanking output) functions.
The outputs can drive a common-anode 7-segment display directly.

THE 74LS47 BCD-TO-7-SEGMENT DECODER/DRIVER

Zero suppression is a feature used for multidigit displays to blank out
unnecessary zeros.
Blanking the zeros at the front of a number is called leading zero
suppression and blanking the zeros at the back of the number is called
trailing zero suppression
Zero suppression in the 74LS47 is accomplished using the RBI and BI/RBO
functions.
BI is the blanking input that shares the same pin with RBO; in other words,
the BI/RBO pin can be used as an input or an output. When used as a BI
(blanking input), all segment outputs are HIGH (nonactive) when BI is
LOW, which overrides all other inputs. The BI function is not part of the
zero suppression capability of the device.
All of the segment outputs of the decoder are nonactive (HIGH) if a zero
code (0000) is on its BCD in puts and if its RBI is LOW. This causes the
display to be blank and produces a LOW RBO.
The logic diagram in Figure 6-36ta) illustrates leading zero suppression for a
whole number. The highest-order digit position (left-most) is always blanked
if a zero code is on

THE 74LS47 BCD-TO-7-SEGMENT DECODER/DRIVER

SECTION 6-5 REVIEW QUESTIONS

1. A 3-line-to-8-line decoder can be used for octal-to-decimal

decoding. When a binary 101 is on the inputs, which output

line is activated?

2. How many 74HC154 1-of-16 decoders are necessary to decode

a 6-bit binary number?

3. Would you select a decoder/driver with active-HIGH or active-

LOW outputs to drive a common-cathode 7-segment LED

display?

An encoder is a combinational logic circuit that essentially performs a

"reverse" decoder function. An encoder accepts an active level on one

of its inputs representing a digit, such as a decimal or octal digit, and

converts it to a coded output, such as BCD or binary. Encoders can

also be devised to encode various symbols and alphabetic characters.

The process of converting from familiar symbols or numbers to a

coded format is called encoding.

6-6 ENCODERS

The Decimal to BCD Encoder

10-line-to-4-line encoder.

A3 = 8 + 9

A2 = 4 + 5 + 6 + 7

A1 = 2 + 3 + 6 + 7

A0 = I + 3 + 5 + 7 + 9
مشکل اين انکودر چيست؟

Priority encoder with active-LOW inputs and outputs
Zero output is represented when none of the inputs is active.

 Priority encoder

 EI (enable input) must be LOW.

 It also has the EO (enable output)
and GS output for expansion
purposes.

 The EO is LOW when the EI is
LOW and none of the inputs (0
through 7) is active.

 GS is LOW when EI is LOW and
any of the inputs is active.

 The 74LS148 can be expanded to a 16-1ine-to-4-line encoder by
connecting the EO of the higher-order encoder to the EI of the
lower-order encoder and negative-ORing the corresponding binary
outputs.

 The EO is used as the fourth and most significant bit. This
particular configuration produces active-HIGH outputs for the 4-bit

binary number.

MUX DMUX

MUXکاربردھای
انتخاب اطلاعات

مبدل اطلاعات موازی به سریال
ساخت توابع ترکيبی

D0 D1 D2 D3 D4 D5 D6 D7

A3 0 1 2 3 4 5 6 7
A3 8 9 10 11 12 13 14 15

A3 A3 VCC GND A3 VCC A3 VCC

جدولی مشابه جدول فوق تشکيل می دھيم
ی کنيمسه بيت کم ارزشتر ورودی را به ترتيب باينری به وروديھای انتخاب وصل م

.ھستند را مشخص می کنيم 1شماره سطرھايی که در جدول ارزش دارای خروجی
مربوط به ھر ستون را به ترتيب به سيگنالھای زير وصل می کنيم Iپايه

يا سطح صفر منطقی GNDبودند به 0اگر ھر دو سطر) الف
منطقی 1يا سطح Vccبودند به 1اگر ھر دو) ب
A3بود به خود 1و اگر در سطر دوم A3بود به مکمل 1اگر در سطر اول) ج

D0 D1 D2 D3 D4 D5 D6 D7

A3 0 1 2 3 4 5 6 7
A3 8 9 10 11 12 13 14 15

A3 A3 VCC GND A3 VCC A3 VCC

	chapter 1
	ch 2
	chapter 3
	ch4
	chapter 5
	ch6

