Contents

Digital Concepts 2

1-1
1-2

1-3
14
1-5

O

2-1
2-2
2-3
24
2-5

2-6
2-7

2-8
2-9
2-10
2-11
2-12

Digital and Analog Quantities 4

Binary Digits, Logic Levels, and Digital
Waveforms 6

Basic Logic Operations 12

Overview of Basic Logic Functions 14
Fixed-Function Integrated Circuits 19
Introduction to Programmable Logic 22
Test and Measurement Instruments 27

Digital System Application 38

Number Systems, Operations, and Codes 46

Decimal Numbers 48

Binary Numbers 50
Decimal-to-Binary Conversion 53
Binary Arithmetic 56

I's and 2’s Complements of Binary
Numbers 60

Signed Numbers 62

Arithmetic Operations with Signed
Numbers 68

Hexadecimal Numbers 75

Octal Numbers 82

Binary Coded Decimal (BCD) 84
Digital Codes 87

Error Detection and Correction Codes 95

Logic Gates 112

3-1
3-2
3-3
34
3-5
3-6

3-8

2 0O

The Inverter 114
The AND Gate 117
The OR Gate 124
The NAND Gate 129
The NOR Gate 134

The Exclusive-OR and Exclusive-NOR
Gates 139

' l
) ol 80 SN IRARELR)] LU AL y
& —_

Fixed-Function Logic 150

Troubleshooting 160

Boolean Algebra and Logic
Simplification 182

4-1
4-2
4-3
4-4
45
4-6

4-10
4-11

]
.

Boolean Operations and Expressions 184
Laws and Rules of Boolean Algebra 185
DeMorgan’s Theorem 191

Boolean Analysis of Logic Circuits 194
Simplification Using Boolean Algebra 196
Standard Forms of Boolean

Expressions 200

Boolean Expressions and Truth Tables 206
The Karnaugh Map 210

Karnaugh Map SOP Minimization 212
Karnaugh Map POS Minimization 221
Five-Variable Karnaugh Maps 2251

VHDL 228

Digital System Application 230

Contents

5 Combinational Logic Analysis 244

5-1 Basic Combinational Logic Circuits 246

5-2 Implementing Combinational Logic 250

5-3 The Universal Property of NAND and NOR
Gates 256

54 Combinational Logic Using NAND and
NOR Gates 258

5-5 Logic Circuit Operation with Pulse
Waveform Inputs 263

5-6 Combinational Logic with VHDL 266

5 Troubleshooting 272

[

Digital System Application 278

Functions of Combinational Logic 296

6—1 Basic Adders 298

6-2 Parallel Binary Adders 301

6-3 Ripple Carry versus Look-Ahead Carry
Adders 308

64 Comparators 311

6-5 Decoders 316

66 Encoders 324

6—-10 Parity Generators/Checkers 342
6-11 Troubleshooting 345
Digital System Application 348

Latches, Flip-Flops, and Timers 370
7-1 Latches 372
72 Edge-Triggered Flip-Flops 378
7-3 Flip-Flop Operating Characteristics 390
7-4 Flip-Flop Applications 393
7-5 One-Shots 398
7—-6 The 555 Timer 403
77 Troubleshooting 409
Digital System Application -11

Counters 426

8-1 Asynchronous Counter Operation 428
8—2 Synchronous Counter Operation 436
83 Up/Down Synchronous Counters 444
84 Design of Synchronous Counters 447 -
85 Cascaded Counters 457

8-6 Counter Decoding 461

8—7 Counter Applications 464

8—8 Logic Symbols with Dependency

6-7 Code Converters 329
68 Multiplexers (Data Selectors) 331
6-9 Demultiplexers 340

39

Notation 469
Troubleshooting 471

Digital System Application 475

Contents

9 Shift Registers 492

9-1
92
9-3
94
9-5
9-6
9-7
9-8
9-9

9-10

10
Basic Shift Register Functions 494

Serial In/Serial Out Shift Registers 495

Serial In/Parallel Out Shift Registers 499
Parallel In/Serial Out Shift Registers 501
Parallel In/Parallel Out Shift Registers 505
Bidirectional Shift Registers 507

Shift Register Counters 510

Shift Register Applications 514

Logic Symbols with Dependency
Notation 521

Troubleshooting 522

Digital System Application 525

Memory and Storage 536

10-1
10-2
10-3
104

10-4
10-6
10-7
10-8
10-9

Basics of Semiconductor Memory 538
Random-Access Memories (RAMs) 542
Read-Only Memories (ROMs) 555

Programmable ROMs (PROMs and
EPROMs) 560

Flash Memories 563

Memory Expansion 568

Special Types of Memories 574
Magnetic and Optical Storage 579
Troubleshooting 585

Digital System Application 589

DIGITAL CONCEPTS

CHAPTER OBJECTIVES

CHAPTER OUTLINE

1-1 Digital and Analog Quantities Explain the basic differences between digital and analog
1-2 Binary Digits, Logic Levels, and Digital quantities
Waveforms Show how voltage levels are used to represent digital quantities

1-3 Basic Logic Operations)))
Describe various parameters of a pulse waveform such as rise

1-4 Overview of Basic Logic Functions time, fall time, pulse width, frequency, period, and duty cycle

1-5 Fixed-Function Int ted Circuits
mecTHHICHEn TeErate BT “ Explain the basic logic operations of NOT, AND, and OR

1-6 Introduction to Programmable Logic
Describe the logic functions of the comparator, adder, code

1-7 Test and Measurement Instruments)]
converter, encoder, decoder, multiplexer, demultiplexer,

m Digital System Application counter, and regjster

Identify fixed-function digital integrated circuits according to
their complexity and the type of circuit packaging

Identify pin numbers on integrated circuit packages

Describe programmable logic, discuss the various types, and
describe how PLDs are programmed

Recognize various instruments and understand how they are
used in measurement and troubleshcoting digital circuits and

systems

Show how a complete digital system is formed by combining the
basic functions in a practical application

INTRODUCTION

The term digital is derived from the way computers perform
operations, by counting digits. For many years, applications
of digital electronics were confined to computer systems.
Today, digital technology is applied in a wide range of areas
in addition to computers. Such applications as television,
communications systems, radar, navigation and guidance
systems, military systems, medical instrumentation, industrial
process control, and consumer electronics use digital
techniques. Over the years digital technology has progressed
from vacuum-tube circuits to discrete transistors to complex
integrated circuits, some of which contain millions of
transistors.

This chapter introduces you to digital electronics and
provides a broad overview of many important concepts,
components, and tools.

Analog
Digital
Binary
Bit
Pulse
Clock
Timing diagram
Data
Serial
Parallel
Logic
Input

Key terms are in order of appearance in the chapter.

Output
Gate
NOT
Inverter
AND

OR
Integrated circuit (1C)
SPLD
CPLD
FPGA
Compiler

Troubleshooting

1-1 DIGITAL AND ANALOG QUANTITIES

Electronic circuits can be divided into two broad categories, digital and analog. Digital
electronics involves quantities with discrete values, and analog electronics involves
quantities with continuous values. Although you will be studying digital fundamentals
in this book, you should also know something about analog because many applications
require both; and interfacing between analog and digital is important.

After completing this section. you should be able to

= Define analog ® Define digital ® Explain the difference between digital and analog
quantities = State the advantages of digital over analog ® Give examples of how digital
and analog quantities are used in electronics

An analog* guantity is one having continuous values. A digital quantity is one having
a discrete set of values. Most things that can be measured quantitatively occur in nature in
analog form. For example, the air temperature changes over a continuous range of values.
During a given day, the temperature does not go from. say, 70° to 71° instantancously; it
takes on all the infinite values in between. If you graphed the temperature on a typical sum-
mer day. you would have a smooth, continuous curve similar to the curve in Figure 1-1.
Other examples of analog quantities are time, pressure, distance, and sound.

Temperature
(°F)

A
100 — £3] - [
95 |- :

85

80 — . !
75 o . : ; L. S e t
70 |- : ’:

N S| (o | O Wl O8N TN | et L R
1 2 3 4 § 67 8 21011121 2 3 45 6 7 8 9 101112
AM P.M.

» Time of day

Rather than graphing the temperature on a continuous basis, suppose you just take a tem-
perature reading every hour. Now you have sampled values representing the temperature at
discrete points in time (every hour) over a 24-hour period, as indicated in Figure 1-2. You
have etfectively converted an analog quantity to a form that can now be digitized by repre-
senting each sampled value by a digital code. It is important to realize that Figure 1-2 itself
is not the digital representation of the analog quantity.

The Digital Advantage Digital representation has certain advantages over analog repre-
sentation in electronics applications. For one thing, digital data can be processed and trans-
mitted more efficiently and reliably than analog data. Also, digital data has a great
advantage when storage 1s necessary. For example. music when converted to digital form
can be stored more compactly and reproduced with greater accuracy and clarity than is pos-
sible when it 1s in analog form. Noise (unwanted voltage fluctuations) does not affect dig-
ital data nearly as much as it does analog signals.

Temperature FIGURE 1-2
(T) Sampled-value representation
100 b - S L : e — s {(quantization) of the analog
. P : : quantity in Figure 1-1. Each value
represented by a dot can be digjtized
:0 [! : B3 | 7_ h & | by repres?nting it as_a digital code
S 1 e o . —— — that consists of a series of 1s and 0s.
80 |- —-
75 l - -
70 — e . ’, - 9 L

|
— I ‘ N - i » Time of day
1234567 8910111212 34567 89101112
AM. P.M.

An Analog Electronic System

A public address system, used to amplily sound so that it can be heard by a large audience, 1s
one simple example ot an application of analog electronics. The basic diagram in Figure 1-3
1llustrates that sound waves, which are analog in nature, are picked up by a microphone and
converted to a small analog voltage called the audio signal. This voltage varies continuously
as the volume and frequency of the sound changes and is applied to the input of a linear am-
phifier. The output of the amplifier, which is an increased reproduction of input voltage, goes
to the speaker(s). The speaker changes the amplified audio signal back to sound waves that
have a much greater volume than the original sound waves picked up by the microphone.

2. Orivinal &
==, Ori ginal sound waves
N

Reproduced

Microphone n
l sound waves

_ //.

\
» Linear amplifier ‘
5

[V Y

Audio si gnal

FIGURE 1-3 ;
A basic audio public address system. Amplhified audio signal

A System Using Digital and Analog Methods

The compact disk (CD) player is an example of a system in which both digital and analog cir-
cuits are used. The stmplified block diagram in Figure 1-4 illustrates the basic principle. Mu-
sic in digital form is stored on the compact disk. A laser diode optical system picks up the
digital data from the rotating disk and transfers it to the digital-to-analog converter (DAC).

CD drive

Digital data

FIGURE 1-4

_, Digital-to-analog

converter

Basic block diagram of a CD player.

Only one channel is shown.

\\\\

Fu i ,.f"-\. \ \s\
.-'I_ \ i\ Ji ! : \‘ B 1
N 3“2‘. . L‘%‘ l'_\ ! \‘;‘ -_:: "".,_1 3_?:; \
' » Linear amplifier) RERE
Analog /
reproduction /
of music audio Speaksr /)
signal o
Sound
waves

The DAC changes the digital data into an analog signal that 1s an electrical reproduction of
the original music. This signal is amplified and sent to the speaker for you to enjoy. When the
music was originally recorded on the CD, a process, essentially the reverse of the one de-
scribed here, using an analog-to-digital converter (ADC) was used.

[SECTION 1-1

 REVIEW 1. Define analog.
Answers are at the end of the 2. Define digital.
chapter. 3. Explain the difference between a digital quantity and an analog quantity.

4. Give an example of a system that is analog and one that is a combination of both
digital and analog. Name a system that is entirely digital.

1-2

Digital electronics involves circuits and systems in which there are only two possible
states. These states are represented by two different voltage levels: A HIGH and a LOW.
The two states can also be represented by current levels, bits and bumps on a CD or
DVD. etc. In digital systems such as computers, combinations of the two states, called
codes, are used to represent numbers, symbols, alphabetic characters, and other types of
information. The two-state number system is called binary, and its two digits are O and 1.
A binary digit 1s called a bir.

After completing this section. you should be able to

Define binary ® Define bit ® Name the bits in a binary system ® Explain how voltage
levels are used to represent bits ® Explain how voltage levels are interpreted by a digital
circull ® Describe the general characteristics of a pulse ® Determine the amplitude. rise
time. fall time. and width of a pulse ® Identify and describe the characteristics of a digital
waveform = Determine the amplitude, period, frequency, and duty cycle of a digital
waveform ® Explain what a timing diagram is and state its purpose ® Explain serial and
parallel data transfer and state the advantage and disadvantage of each

o] - o

e I SR S Sl
INANY LI ?ﬁ | Y
Dilidl y LIEEILS

Each of the two digits in the binary system, 1 and 0, is called a bit, which 18 a contraction
of the words binary digit. In digital circuits. two different voltage levels are used to repre-
sent the two bits. Generally, 1 1s represented by the higher voltage, which we will refer to
as a HIGH, and a O 1s represented by the lower voltage level, which we will refer to as a
LOW. This is called positive logic and will be used throughout the book.

HIGH=1 and LOW =0

Another system in which a 1 is represented by a LOW and a O is represented by a HIGH is
called negative logic.

Groups of bits (combinations of Is and 0s), called codes, are used to represent numbers,
letters, symbols, instructions, and anything else required in a given application.

- q
S evea™ B &
LOFIC L EW@% >
S

The voltages used to represent a 1 and a O are called logic levels. Ideally, one voltage level
represents a HIGH and another voltage level represents a LOW. In a practical digital cir-
cuit, however, a HIGH can be any voltage between a specified minimum value and a Spec-
ified maximum value. Likewise, a LOW can be any voltage between a specified minimum

and a specified maximum. There can be no overlap between the accepted range of HIGH
levels and the accepted range of LOW levels.

can be traced back to Charles

Babbage, who developed a crude
mechanical computation device in
the 1830s. John Atanasoff was the
first to apply electronic processing
to digital computing in 1939. In
1946, an electronic digital
computer called ENIAC was
implemented with vacuum-tube
circuits. Even though it took up an
entire room, ENIAC didn’t have
the computing power of your
handheld calculator.

Figure 1-5 illustrates the general range of LOWSs and HIGHSs for a digital circuit. The
variable Vi, .., represents the maximum HIGH voltage value, and Vi, represents the
minimum HIGH voltage value. The maximum LOW voltage value is represented by
V1 (max)» @nd the minimum LOW voltage value is represented by V; ...,. The voliage val-
ues between V) (..., and Vi .., are unacceptable for proper operation. A voltage in the un-
allowed range can appear as either a HIGH or a LOW to a given circuit and is therefore
not an acceptable value. For example, the HIGH values for a certain type of digital cir-
cuit called CMOS may range from 2 V to 3.3 V and the LOW values may range from
0V to 0.8 V. So, for example, if a voltage of 2.5 V is applied, the circuit will accept it as
a HIGH or binary 1. If a voltage of 0.5 V is applied, the circuit will accept it as a LOW
or binary 0. For this type of circuit, voltages between 0.8 V and 2 V are unacceptable.

A FIGURE 1-5
Vhamax) Logic level ranges of voltage for a
HIGH digital CirCU lt.
(binary 1)
VH(min)
Unallowed
VLtmax
LOW
(binary ()
VL(min}

Digital Waveforms

Digital waveforms consist of voltage levels that are changing back and forth between the
HIGH and LOW levels or states. Figure 1-6(a) shows that a single positive-going pulse is
generated when the voltage (or current) goes from its normally LOW level to its HIGH level
and then back to its LOW level. The negative-going pulse in Figure 1-6(b) is generated
when the voltage goes from its normally HIGH level to its LOW level and back to its HIGH
level. A digital waveform is made up of a series of pulses.

FIGURE 1-6
Ideal pulses.
HIGH = HIGH
Rising or e ‘ Falling or Falling or ﬂ | Rising or
leading edge trailing edge leading edge trailing edge
[OW — L o, SS—
I f o 5
(a) Posttive—going pulse (b) Negative—going pulse

The Pulse As indicated in Figure 1-6, a pulse has two edges: a leading edge that occurs
first at time £, and a trailing edge that occurs last at time ¢,. For a positive-going pulse, the
leading edge 1s a rising edge, and the trailing edge is a falling edge. The pulses in Figure
1-6 are 1deal because the rising and falling edges are assumed to change in zero time (in-
stantaneously). In practice, these transitions never occur instantaneously, although for most
digital work you can assume ideal pulses.

Figure 1-7 shows a nonideal pulse. In reality, all pulses exhibit some or all of these
characteristics. The overshoot and ringing are sometimes produced by stray inductive and

P Overshoot

7\ 2 Ringing
f ‘“._‘\' f_x‘: . D —n
___________ | S S, P . S — TOO
————— A Ty
0% ¢ FIGURE 1-7
/,fl : l"‘i‘i‘ Nonideal pulse characteristics.
A itude { \
Amplitude / : I T
‘ 50% " Ly
gl Pulse width I\
1 I \
f/ | | \
10% I ! ‘
| : \ ~» — Ringing
?} A “1 | | i\\ j:;‘ —~
W I [' I\/ ™~
Base line 1 1 I I x%% ;
I 1 1 1 - Undershoot
[Py
f 1,
Rise time Fall time

capacitive effects. The droop can be caused by stray capacitive and circuit resistance, form-
ing an RC circuit with a low time constant.

The time required for a pulse to go from its LOW level to its HIGH level is called the
rise time (Z,), and the time required for the transition from the HIGH level to the LOW level
is called the fall time (Z7). In practice, it is common to measure rise time from 10% of the
pulse amplitude (height from baseline) to 90% of the pulse amplitude and to measure the
fall ime from 90% to 10% of the pulse amplitude, as indicated in Figure 1-7. The bottom
10% and the top 10% of the pulse are not included in the rise and fall times because of the
nonlinearities in the waveform in these areas. The pulse width (fy) is a measure of the du-
ration of the pulse and is often defined as the time interval between the 50% points on the
rising and falling edges, as indicated in Figure 1-7.

Waveform Characteristics Most waveforms encountered in digital systems are composed
of series of pulses, sometimes called pulse trains, and can be classified as either periodic or
nonperiodic. A periodic pulse waveform is one that repeats itself at a fixed interval, called
a period (7). The frequency (f) is the rate at which it repeats itself and 1s measured in hertz
(Hz). A nonperiodic pulse waveform, of course, does not repeat itself at fixed intervals and
may be composed of pulses of randomly differing pulse widths and/or randomly differing
time intervals between the pulses. An example of each type is shown in Figure 1-8.

-7 —qu— ;o —.1.._ i r_.I {b) Nenperiodic
FIGURE 1-8
Perlod——T,_ s=Ta= s =T

Frequency = ?

Examples of digital waveforms.
(a) Periodic (square wave)

The frequency (f) of a pulse (digital) waveform is the reciprocal of the period. The rela-
tionship between frequency and period is expressed as follows:

1
= T Equation 1-1

Ir=- Equation 1-2

An important characteristic of a periodic digital waveform is its duty cycle, which is the
ratio of the pulse width (ty) to the period (7). It can be expressed as a percentage.

o
Duty CYC]C = (_;__") 100% Equation 1-3

I EXAMPLE 1-1

Solution

Related Problem*

(a) period

A portion of a periodic digital waveform is shown in Figure 1-9. The measurements
are in milliseconds. Determine the following:

(b) frequency (c) duty cycle

1

= - — ﬂ______ ———— 1 (ms)
0 1 10 11

FIGURE 1-9

(a) The period 1s measured from the edge of one pulse to the corresponding edge of
the next pulse. In this case 7"is measured from leading edge to leading edge, as
indicated. 7 equals 10 ms.

(b)fz%— = 100 Hz

© 10ms

ms

(¢) Duty cycl "1 00% !
C — —= =
u y yCIE T 10

) 100% = 10%
ms

A periodic digital waveform has a pulse width of 25 us and a period of 150 us.
Determine the frequency and the duty cycle.

A Digital Waveform Carries Binary Inform

Binary information that is handled by digital systems appears as waveforms that represent
sequences of bits. When the waveform 1s HIGH, a binary 1 is present; when the waveform
1s LOW, a binary 0 is present. Each bit in a sequence occupies a defined time interval called
a bit time.

The Clock In digital systems, all waveforms are synchronized with a basic timing wave-
form called the clock. The clock is a periodic waveform in which each interval between
pulses (the period) equals the time for one bit.

An example of a clock waveform is shown in Figure 1-10. Notice that, in this case, each
change in level of waveform A occurs at the leading edge of the clock wavetorm. In other
cases, level changes occur at the trailing edge of the clock. During each bit time of the clock,
waveform A 1s either HIGH or LOW. These HIGHs and LOWSs represent a sequence of bits
as indicated. A group of several bits can be used as a piece of binary information, such as
a number or a letter. The clock waveform itself does not carry information.

Bit
g ime
e

>

I
Clock
0

e — i e
—— e
o e —— i
S =l ©
! — v — —
e ey — ey

e R G — —
TR

1
0 -

Bit sequence
represented by
waveform A

A

)

o=
-

0

P
e

=
—— b i —

———— — —
—— ———
— e ————
———— | — el
——] - —— e =)
N

=
—
P

i B

 The speed at which a computer
can operate depends on the type
-of microprocessor used in the
“system. The speed specification, for
I example 3.5 GHz, of a computer is
| .
the maximum clock frequency at

which the microprocessor can run.

o

COMPUTER NOTE .z

Timing Diagrams A timing diagram is a graph of digital waveforms showing the actual
time relationship of two or more waveforms and how each waveform changes in relation to
the others. By looking at a timing diagram, you can determine the states (HIGH or LOW)
of all the waveforms at any specified point in time and the exact ume that a waveform
changes state relative to the other waveforms. Figure 1-11 is an example of a timing dia-
gram made up of four waveforms. From this timing diagram you can see, for example, that
the three waveforms A, B, and C are HIGH only during bit time 7 and they all change back
LOW at the end of bit time 7 (shaded area).

Clock - | | L
| | “) | | 4 | oo | 6 | I
| | i | | I - [| |
| i | | | | | |
| | L | — 1 L
1 [1 | 1 t 1 |
| | I 1 | | | i
I L —l | | L &]
l |] | |
i i | [i i | |
| | | I | | | i
| | I = o & — 1
i | | I ! |
C I 1 if I 1 I

A. B, and C HIGH

FIGURE 1-11

Example of a timing diagram.

Data Transfer

Data refers to groups of bits that convey some type of information. Binary data, which are
represented by digital waveforms, must be transferred from one circuit to another within a
digital system or from one system to another in order to accomplish a given purpose. For
example, numbers stored in binary form in the memory of a computer must be transferred
to the computer’s central processing unit in order to be added. The sum of the addition must
then be transferred to a monitor for display and/or transferred back to the memory. In com-
puter systems, as illustrated in Figure 112, binary data are transferred in two ways: serial
and parallel.

When bits are transferred in serial form from one point to another, they are sent one bit
at a time along a single line, as illustrated in Figure 1-12(a) for the case of a computer-to-
modem transfer. During the time interval from £, to t,, the first bit is transferred. During the
time interval from ¢, to 1,, the second bit 1s transferred, and so on. To transfer eight bits 1n
series, 1t takes eight time intervals.

When bits are transterred 1in parallel form, all the bits in a group are sent out on sepa-
rate lines at the same time. There is one line for each bit, as shown in Figure 1-12(b) for
the example of eight bits being transferred from a computer to a printer. To transfer eight
bits 1n parallel, it takes one time interval compared to eight time intervals for the serial
transfer.

To summarize, an advantage of serial transfer of binary data is that a minimum of
only one line 1is required. In parallel transfer, a number of lines equal to the number of

bits to be transferred at one time is required. A disadvantage of serial transfer 1s that 1t
takes longer to transfer a given number of bits than with parallel transter. For example,
if one bit can be transferred in 1 ps. then it takes 8 us to serially transfer eight bits but
only 1 us to parallel transfer eight bits. A disadvantage of parallel transfer is that it
takes more lines than senal transfer.

Computer ' o : Printer
1 1
— *
11
L i
1
T T it
1 I
1 (3
[| L
1 I i
O
=) | i
] 1111010 () 1
|| 1 - I
h n h L L4 Is Iy & — >
Computer > Modem e
["
I
(a) Serial transfer of 8 bits of binary data from computer to modem. Interval (b) Parallel transfer of 8 bits of binary data from computer to
Iy to 1y 1s first. printer. The beginning time is 1.

FIGURE 1-12

Illustration of serial and parallel transfer of binary data. Only the data lines are shown.

I EXAMPLE 1-2 (a) Determine the total time required to serially transfer the eight bits contained in

waveform A of Figure 1-13, and indicate the sequence of bits. The left-most bit is
the first to be transferred. The 100 kHz clock is used as reference.

(b) What is the total time to transfer the same eight bits in parallel?
L] L | J L[L] L L
| ' |
I |
N

Clock

[|
| | |
1 | |
| I |

. Lﬂ_}iﬁ

L______J

__J._____

FIGURE 1-13

Solution (a) Since the frequency of the clock is 100 kHz. the period is

1 1

T=-=— =10
f 100kHz &

It takes 10 ps to transfer each bit in the waveform. The total transfer time for 8 bits 13
8 X 10 pus = 80 ps
To determine the sequence of bits, examine the waveform in Figure 1-13 during

each bit time. If waveform A is HIGH during the bit time, a 1 is transferred. If

waveform A is LOW during the bit time, a 0 1s transferred. The bit sequence 18
illustrated in Figure 1-14. The left-most bit is the first to be transferred.

FIGURE 1-14

(b) A parallel transter would take 10 us for all eight bits.

Related Problem If binary data are transferred at the rate of 10 million bits per second (10 Mbits/s),
how long will it take to parallel transfer 16 bits on 16 lines? How long will it take to
serially transfer 16 bits?

| ISECTION 1-2
. BREVIEW

Define binary.

. What does bit mean?

What are the bits in a binary system?

How are the rise time and fall time of a pulse measured?

Knowing the period of a waveform, how do you find the frequency?
Explain what a clock waveform is.

What is the purpose of a timing diagram?

© N o v s W

. What is the main advantage of parallel transfer over serial transfer of binary data?

1-3 BASIC LOGIC OPERATIONS

In its basic form, logic is the realm of human reasoning that tells you a certain
proposition (declarative statement) 1s true if certain conditions are true. Propositions can
be classified as true or false. Many situations and processes that you encounter in your
daily life can be expressed in the form of propositional, or logic, functions. Since such
functions are true/false or yes/no statements, digital circuits with their two-state
characteristics are applicable.

After completing this section, you should be able to

m [ist three basic logic operations ® Define the NOT operation ® Define the AND
operation ® Define the OR operation

Several propositions. when combined, form propositional. or logic, functions. For ex-
ample, the propositional statement “The light is on” will be true if “The bulb is not burned
out” 1s true and if “The switch is on” is true. Therefore, this logical statement can be made:
The light is on only if the bulb is not burned out and the switch is on. In this example the
first statement is true only 1if the last two statements are true. The first statement (“The light
is on™) is then the basic proposition, and the other two statements are the conditions on
which the proposition depends.

In the 1850s, the Irish logician and mathematician George Boole developed a mathe-
matical system for formulating logic statements with symbols so that problems can be writ-
ten and solved in a manner similar to ordinary algebra. Boolean algebra, as it is known

today, is applied in the design and analysis of digital systems and will be covered 1n detail
in Chapter 4.

The term logic is applied to digital circuits used to implement logic functions. Several
kinds of digital logic circuits are the basic elements that form the building blocks for
such complex digital systems as the computer. We will now look at these elements and
discuss their functions 1n a very general way. Later chapters will cover these circuits in
detail.

Three basic logic operations (NOT, AND, and OR) are indicated by standard distinctive
shape symbols in Figure 1-15. Other standard symbols for these logic operations will be
introduced in Chapter 3. The lines connected to each symbol are the inputs and outputs.
The inputs are on the left of each symbol and the output is on the right. A circuit that per-
forms a specified logic operation (AND, OR) is called a logic gate. AND and OR gates can
have any number of inputs, as indicated by the dashes in the figure.

> H D FHD-

NOT AND OR

In logic operations, the true/false conditions mentioned earlier are represented by a
HIGH (true) and a LOW (false). Each of the three basic logic operations produces a unique
response to a given set of conditions.

NOT

The NOT operation changes one logic level to the opposite logic level, as indicated in
Figure 1-16. When the input is HIGH (1), the output is LOW (0). When the input is LOW,
the output is HIGH. In either case, the output is not the same as the input. The NOT oper-
ation is implemented by a logic circuit known as an inverter.

HIGH (1) % LOW (0) LOW () —|>o-— HIGH (1)

FIGURE 1-15

e basic logic operations and
nbols.

FIGURE 1-16
The NOT operation.

AND

The AND operation produces a HIGH output only when all the inputs are HIGH, as indi-
cated in Figure 1-17 for the case of two inputs. When one input is HIGH and the other in-
put is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW. The
AND operation 1s implemented by a logic circuit known as an AND gate.

FIGURE 1-17

The AND operation.
HIGH (1) ——
LOW (0) —

LOW (0) —
LOW (0) ——

HIGH (1) —— ‘ LOW (0) — r
i HIGH (1) i LOW (0)
HIGH (1) —— HIGH (1) ——

LOW (0)

LOW (0)

OR

The OR operation produces a HIGH output when one or more inputs are HIGH, as indi-
cated in Figure 1-18 for the case of two inputs. When one input 1s HIGH or the other input
is HIGH or both inputs are HIGH, the output is HIGH. When both inputs are LOW, the out-
put is LOW. The OR operation is implemented by a logic circuit known as an OR gate.

HIGH (1) LOW (0)
_ :D— HIGH (1)) HIGH ()
HIGH (1) HIGH (1)

FIGURE 1-18

The OR operation.

HIGH (1) LOW (0)
, 3 HIGH (1) :[>_ LOW (0)
LOW (0) LOW (0)

I SECTION 1-3
REVIEW

1. When does the NOT operation produce a HIGH output?
2. When does the AND operation produce a HIGH output?
3. When does the OR operation produce a HIGH output?
4. What is an inverter?

5. What is a logic gate?

1-49 OVERVIEW OF BASIC LOGIC FUNCTIONS

The three basic logic elements AND, OR, and NOT can be combined to form more
complex logic circuits that perform many useful operations and that are used to build
complete digital systems. Some of the common logic functions are comparison.
arithmetic, code conversion, encoding, decoding, data selection, storage, and counting.
This section provides a general overview of these important functions so that you can
begin to see how they form the building blocks of digital systems such as computers.
Each of the basic logic functions will be covered in detail in later chapters.

After completing this section, you should be able to

w Identify nine basic types of logic functions ® Describe a basic magnitude comparator
m List the four arithmetic functions ® Describe a basic adder ® Describe a basic
encoder ® Describe a basic decoder ® Define multiplexing and demultiplexing =

State how data storage is accomplished ® Describe the function of a basic counter

The Comparison Function

Magnitude comparison is performed by a logic circuit called a comparator, covered in
Chapter 6. A comparator compares two quantities and indicates whether or not they are
equal. For example, suppose you have two numbers and wish to know if they are equal or
not equal and, if not equal, which is greater. The comparison function is represented in
Figure 1-19. One number in binary form (represented by logic levels) is applied to input A,

FIGURE 1-19

The comparison function.

Comparator Comparator
A>B — - B A>B —— 1OV
A 3 A
I
binary A=B —— Qutputs A=B —— LOW
numbers =
| na
B code l1. rrg C
A<B — b A<B -———HIGH
(a) Basic magnitude comparator (b) Example: A is less than B (2 < 5) as indicated by

the HIGH output (A < B)

and the other number in binary form (represented by logic levels) is applied to input B. The
outputs indicaie the relationship of the two numbers by producing a HIGH level on the
proper output line. Suppose that a binary representation of the number 2 is applied to in-
put A and a binary representation of the number J is applied to input B. (We discuss the bi-
nary representation of numbers and symbols in Chapter 2.) A HIGH level will appear on
the A < B (A 1s less than B) output, indicating the relationship between the two numbers (2
18 less than 5). The wide arrows represent a group of parallel lines on which the bits are
transferred.

The Arithmetic Functions

Addition Addition is performed by a logic circuit called an adder, covered in Chapter 6.
An adder adds two binary numbers (on inputs A and B with a carry input C,,) and generates
a sum (2) and a carry output (C,), as shown in Figure 1-20(a). Figure 1-2((b) illustrates
the addition of 3 and 9. You know that the sum is 12; the adder indicates this result by pro-
ducing 2 on the sum output and 1 on the carry output. Assume that the carry input in this
example 1s 0.

Adder Adder
Binar
A e A :
5) B Sum code for 3 +30 Binary
=S code for 2
numbers LE
[Com — Curry out Binary Gl Binary |
B code for 9 B
Carrv in — G, Binary ()} ——— Cin
Binary
code for 12

FIGURE 1-20

The addition function.

Subtraction Subtraction is also performed by a logic circuit. A subtracter requires three
iputs: the two numbers that are to be subtracted and a borrow input. The two outputs are
the difference and the borrow output. When, for instance, 5 is subtracted from & with no
borrow 1nput. the difference 1s 3 with no borrow output. You will see in Chapter 2 how sub-
traction can actually be performed by an adder because subtraction is simply a special case
of addition.

Multiplication Multiplication is performed by a logic circuit called a multiplier. Numbers
are always multiplied two at a time, so two inputs are required. The output of the multiplier
1s the product. Because multiplication 1s simply a series of additions with shifts in the po-
sitions of the partial products, it can be performed by using an adder in conjunction with
other circuits.

Division Division can be performed with a series of subtractions, comparisons, and
shifts. and thus 1t can also be done using an adder in conjunction with other circuits. Two
inputs to the divider are required, and the outputs generated are the quotient and the
remainder.

COMPUTER NOTE

In a microprocessor, the
arithmetic logic unit (ALU)
performs the operations of add,
subtract, multiply, and divide as
-well as the logic operations on
digital data as directed by a series
“of instructions. A typical ALU is

constructed of many thousands of
| logic gates.

The Code Conversion Function

A code is a set of bits arranged in a unique pattern and used to represent specified infor-
mation. A code converter changes one form of coded information into another coded form.
Examples are conversion between binary and other codes such as the binary coded decimal

(BCD) and the Gray code. Various types of codes are covered in Chapter 2. and code con-
verters are covered in Chapter 6.

The Encoding Function

The encoding function is performed by a logic circuit called an encoder, covered in
Chapter 6. The encoder converts information, such as a decimal number or an alphabetic
character, into some coded form. For example, one certain type of encoder converts each
of the decimal digits, O through 9, to a binary code. A HIGH level on the input corre-
sponding to a specific decimal digit produces logic levels that represent the proper bi-
nary code on the output lines.

Figure 1-21 is a simple illustration of an encoder used to convert (encode) a calculator
keystroke into a binary code that can be processed by the calculator circuits.

HIGH
» 9 Encoder
— 8
—r FIGURE 1-21
~ Binary code
6 ; : 5 Y Li;'lf’ An encoder used to encode a
— 2 or % used for calculator keystroke into a binary
= storage af:'df or code for storage or for calculation.
computation
—
(7308])(9]) — 1
2 [
| 1 | 2 | 3
0 . L+

Calcularor keypad

The Decoding Function

The decoding function is performed by a logic circuit called a decoder, covered in
Chapter 6. The decoder converts coded information, such as a binary number. into a non-
coded form, such as a decimal form. For example, one particular type of decoder con-
verts a 4-bit binary code into the appropriate decimal digit.

Figure 1-22 is a simple illustration of one type of decoder that is used 1o activate a 7-
segment display. Each of the seven segments of the display is connected to an output line
from the decoder. When a particular binary code appears on the decoder inputs, the appro-
priate output lines are activated and light the proper segments to display the decimal digit
corresponding to the binary code.

FIGURE 1-22

Decoder A decoder used to convert a special

binary code into 2 7-segment

I_' decimal readout.

7-segment display

Binary input

The Data Selection Function

Two types of circuits that select data are the multiplexer and the demultiplexer. The multi-
plexer, or mux for short, is a logic circuit that switches digital data from several input lines
onto a single output line 1n a specified time sequence. Functionally, a multiplexer can be
represented by an electronic swilch operation that sequentially connects each of the input
lines to the output line. The demultiplexer (demux) 1s a logic circuit that switches digital

data from one input line to several output lines in a specified time sequence. Essentially, the
demux 1S a mux in reverse.

Multiplexing and demultiplexing are used when data from several sources are to be
transmitted over one line to a distant location and redistributed to several destinations.
Figure 1-23 illustrates this type of application where digital data from three sources are sent
out along a single line to three terminals at another location.

Multiplexer J U || : Hﬂ.-] l]_J_L[_L | |Q lfU U—lﬂﬂ_ Demultiplexer
I Data from | Datafrom | Datafrom | Datafrom —o [|[ITUUUT
e AtoD BtoE CtoF AtoD
Aﬁ A"l Ary Af1 Af|
. B 2 - f
O——O= P > P B
= N /’ \ A

C /Bl Arz™\ F —

Switching Switching
sequence sequence
control input control input

In Figure 1-23, data from input A are connected to the output line during time interval
At, and transmitted to the demultiplexer that connects them to output D. Then, during in-
terval Ar., the multiplexer switches to input B and the demultiplexer switches to output E.
During interval Az, the multiplexer switches to input C and the demultiplexer switches to
output F.

To summarize, during the first time interval, input A data go to output D. During the sec-
ond time interval, input B data go to output E. During the third time interval, input C data
go to output F. After this, the sequence repeats. Because the time 1s divided up among sev-
eral sources and destinations where each has its turn to send and receive data, this process
1s called time division multiplexing (TDM).

The Storage Function

Storage 1s a function that is required in most digital systems, and its purpose 1s to retain bi-
nary data for a period of time. Some storage devices are used for short-term storage and
some are used for long-term storage. A storage device can “memorize” a bit or a group of
bits and retain the information as long as necessary. Common types of storage devices are

flip-tlops, registers, semiconductor memories, magnetic disks, magnetic tape, and optical
disks (CDs).

Flip-flops A flip-flop 1s a bistable (two stable states) logic circuit that can store only one
bit at a time, either a | or a 0. The output of a flip-flop indicates which bit it is storing. A
HIGH output indicates that a | is stored and a LOW output indicates that a 0 is stored. Flip-
tlops are implemented with logic gates and are covered in Chapter 7.

Registers A register is formed by combining several flip-flops so that groups of bits can
be stored. For example, an 8-bit register 1s constructed from eight flip-flops. In addition to
storing bits, registers can be used to shift the bits from one position to another within the
register or out of the register to another circuit; therefore, these devices are known as shift
registers. Shift registers are covered in Chapter 9.

The two basic types of shift registers are serial and parallel. The bits are stored 1n a se-
rial shift register one at a time, as illustrated in Figure 1-24. A good analogy to the serial
shift register is loading passengers onto a bus single file through the door. They also exit the

bus single file.

Serial bits

on input line

0101 — O

o10— 1o

Sl ©Cf ©f <

-]

Initially. the register contains only invalid
data or all zeros as shown here.

First bit (1) 1s shifted serially into the
register.

Second bit (0) is shifted serially into
register and first bit is shifted right.

Third bit (1) is shifted into register and
the first and second bits are shifted right.

Fourth bit (0) is shifted into register and
the first. second. and third bits are shifted
right. The register now stores all four bits

and 1s full. FIGURE 1-24

Example of the operation of a 4-bit
serial shift register. Each block
represents one storage “cell” or flip-
flop.

The bits are stored in a parallel register simultaneously from parallel lines, as shown in
Figure 1-25. For this case, a good analogy 1s loading passengers on a roller coaster where

they enter all of the cars in parallel.

Parallel bits 0 1 O
on input lines
F
L 2

0

0

0

e

0

1

0

—

Semiconductor Memories
ing large numbers of bits. In one type of memory, called the read-only memory or ROM,
the binary data are permanently or semipermanently stored and cannot be readily changed.
In the random-access memory or RAM, the binary data are temporarily stored and can be
casily changed. Memories are covered in Chapter 10.

Magnetic Memories

Initially, the register 1s empty,
containing only nondata zeros. FIGURE 1-25

Example of the operation of a 4-bit
parallel shift register.

All bits are shifted in and
stored simultancously.

Semiconductor memories are devices typically used for stor-

Magnetic disk memories are used for mass storage of binary data.

Examples are the so-called floppy disks used in computers and the computer’s internal
hard disk. Magneto-optical disks use laser beams to store and retrieve data. Magnetic tape
1s still used 1n memory applications and for backing up data from other storage devices.

| COMPUTER NOTE

| The internal computer memories,
RAM and ROM, as well as the
smaller caches are semiconductor
memories. The registers in 2
microprocessor are constructed of
semiconductor flip-flops. Magnetic
disk memories are used in the
internal hard drive, the floppy
drive, and for the CD-ROM.

The Counting Function

The counting function 1s important in digital systems. There are many types of digital
counters, but their basic purpose i1s to count events represented by changing levels or
pulses. To count, the counter must “remember” the present number so that it can go to the

next proper number in sequence. Therefore. storage capability is an important characteris-
tic of all counters, and flip-flops are generally used to implement them. Figure 1-26 illus-
trates the basic idea of counter operation. Counters are covered in Chapter 8.

Counter
Parallel
M M i outputlines | Binary | Binary | Binary | Binary | Binary
— & — — code code code code code
: 3 4 S for 1 for 2 for 3 for4 for S
Input pulses

Sequence of binary codes that represent
the number of input pulses counted.

FIGURE 1-26

[Hustration of basic counter operation.

‘ SECTION 1-4
REVIEW

N o w s N -

. What does a comparator do?

What are the four basic arithmetic operations?

Describe encoding and give an example.

Describe decoding and give an example.

Explain the basic purpose of multiplexing and demultiplexing.

Name four types of storage devices.

. What does a counter do?

1-5 FIXED-FUNCTION INTEGRATED CIRCUITS

All the logic elements and functions that have been discussed are generally available
in integrated circuit (1C) form. Digital systems have incorporated ICs for many years
because of their small size, high reliability, low cost, and low power consumption. It is
important to be able to recognize the IC packages and to know how the pin
connections are numbered, as well as to be familiar with the way in which circuit
complexities and circuit technologies determine the various IC classifications.

After completing this section. you should be able to

® Recognize the difference between through-hole devices and surface-mount fixed-
function devices ® Identify dual in-line packages (DIP) = Identify small-outline
integrated circuit packages (SOIC) = Idenuify plastic leaded chip carrier packages
(PLCC) m Identify leadless ceramic chip carrier packages (LCCC) ® Determine pin
numbers on various types of IC packages ® Explain the complexity classifications for
fixed-function ICs

A monolithic integrated circuit (IC) is an electronic circuit that is constructed en-
tirely on a single small chip of silicon. All the components that make up the circuit—
transistors, diodes, resistors, and capacitors—are an integral part of that single chip.
Fixed-function logic and programmable logic are two broad categories of digital ICs.
In fixed-function logic. the logic functions are set by the manufacturer and cannot be
altered.

Figure 1-27 shows a cutaway view of one type of fixed-function IC package with the
circuit chip shown within the package. Points on the chip are connected to the package pins
to allow input and output connections to the outside world.

FIGURE 1-27 Plastic

Cutaway view of one type of fixed-
function IC package showing the chip
mounted inside, with connections to
input and output pins.

IC Packages

Integrated circuit (IC) packages are classified according to the way they are mounted on
printed circuit (PC) boards as either through-hole mounted or surface mounted. The
through-hole type packages have pins (leads) that are inserted through holes in the PC board
and can be soldered to conductors on the opposite side. The most common type of through-
hole package 1s the dual in-line package (DIP) shown in Figure 1-28(a).

FIGURE 1-28

Examples of through-hole and
surface-mounted devices. The DIP is
larger than the SOIC with the same
number of leads. This particular DIP
is approximately 0.785 in. long, and
the SOIC is approximately 0.385 in.
long.

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

Another type of IC package uses surface-mount technology (SMT). Surface mounting is
a space-saving alternative to through-hole mounting. The holes through the PC board are un-
necessary for SMT. The pins of surface-mounted packages are soldered directly to conduc-
tors on one side of the board, leaving the other stde free for additional circuits. Also, for a
circuit with the same number of pins, a surface-mounted package is much smaller than a
dual in-line package because the pins are placed closer together. An example of a surface-
mounted package is the small-outline integrated circuit (SOIC) shown in Figure 1-28(b).

Three common types of SMT packages are the SOIC (small-outline IC), the PLCC
(plastic leaded chip carrier), and the LCCC (leadless ceramic chip carrier). These types of
packages are avatlable in various sizes depending on the number of leads (more leads are
required for more complex circuits). Examples of each type are shown in Figure 1-29. As
you can see, the leads of the SOIC are formed into a “gull-wing” shape. The leads of the
PLCC are turned under the package in a J-type shape. Instead of leads, the LCCC has metal
contacts molded into its ceramic body. Other vanations of SMT packages include SSOP
(shrink small-outline package), TSSOP (thin shrink small-outline package), and TVSOP
(thin very small-outline package).

FIGURE 1-29

Examples of SMT package

configurations.

<

. m o

End view End view End view
(a) SOIC with (b) PLCC with (c) LCCC with no leads
“gull-wing” leads J-type leads (contacts are

part of case)

Pin Numbering

All IC packages have a standard format for numbering the pins (leads). The dual in-line
packages (DIPs) and the small-outline [C packages (SOICs) have the numbering arrange-
ment 1llustrated in Figure 1-30(a) for a 16-pin package. Looking at the top of the package,

pin 1 is indicated by an identifier that can be either a small dot, a notch, or a beveled edge.
The dot is always next to pin 1. Also, with the notch oriented upward, pin 1 is always the
top left pin, as indicated. Starting with pin 1, the pin numbers increase as you go down, then
across and up. The highest pin number is always to the right of the notch or opposite the dot.

The PLCC and LCCC packages have leads arranged on all four sides. Pin 1 is indicated
by a dot or other index mark and is located at the center of one set of leads. The pin num-
bers increase going counterclockwise as viewed from the top of the package. The highest
pin number 18 always to the right of pin 1. Figure 1-30(b) illustrates this format for a 20-

pin PLCC package.

Noich

Pin 1

identifier ~

00 =~ O h s R e

{a) DIP or SOIC

Pin | FIGURE 1-30
id’:i}lrﬂ?ier Pin numbering for two standard
3 ’F '1_9' types of IC packages. Top views are

shown.

R
(b) PLCC or LCCC

Complexity Classifications for Fixed-Function ICs

Fixed-function digital ICs are classified according to their complexity. They are listed here
from the least complex to the most complex. The complexity figures stated here for SSI,
MSI, LSI, VLSI, and ULSI are generally accepted, but definitions may vary from one
source to another.

Small-scale integration (SSI) describes fixed-function ICs that have up to ten
equivalent gate circuits on a single chip, and they include basic gates and flip-flops.

Medium-scale integration (MSI) describes integrated circuits that have from 10 to
100 equivalent gates on a chip. They include logic functions such as encoders,
decoders, counters, registers, multiplexers, arithmetic circuits, small memories, and
others.

Large-scale integration (ILSI) is a classification of ICs with complexities of from
more than 100 to 10,000 equivalent gates per chip, including memories.

Very large-scale integration (VLSI) describes integrated circuits with complexities
of trom more than 10,000 to 100,000 equivalent gates per chip.

Ultra large-scale integration (ULSI) describes very large memories, larger micro-
processors, and Jarger single-chip computers. Complexities of more than 100,000
equivalent gates per chip are classified as ULSL

Integrated Circuit Technologies

The types of transistors with which all integrated circuits are implemented are either
MOSFETSs (metal-oxide semiconductor field-effect transistors) or bipolar junction transistors.
A circuit technology that uses MOSFETs is CMOS (complementary MOS). A type of fixed-
function digital circuit technology that uses bipolar junction transistors is TTL (transistor-
transistor logic). BiCMOS uses a combination of both CMOS and TTL..

All gates and other functions can be implemented with either type of circuit technology.
SSI and MSI circuits are generally available in both CMOS and TTL.. LSI, VLSI, and ULSI
are generally implemented with CMOS or NMOS because it requires less area on a chip
and consumes less power. There is more on these integrated technologies in Chapter 3. In
addition, Chapter 14 provides a complete circuit-level coverage.

Handling Precautions for CMOS Because of their particular structure, CMOS devices
are very sensitive to static charge and can be damaged by electrostatic discharge (ESD) if
not handled properly. The following precautions should be taken when you work with
CMOS devices:

CMOS devices should be shipped and stored in conductive foam.

All instruments and metal benches used in testing should be connected to earth
ground.

The handler’s wrist should be connected to earth ground with a length of wire and
high-value series resistor.

Do not remove a CMOS device (or any device for that matter) from a circuit while
the dc power is on.

Do not connect ac or signal voltages to a CMOS device while the dc power supply
1s oft.

~ ISECTION 1-5
REVIEW 1. What is an integrated circuit!

2. Define the terms DIP, SMT, SOIC, 51 MSI, LSI, VLSI and ULSI.

3. Generally, in what classification does a fixed-function IC with the following number

of equivalent gates fall?
(3) 10 (b} 75 (c) 500 (d) 15000 (e) 200,000

1-6 INTRODUCTION TO PROGRAMMABLE LOGIC

Programmable logic requires both hardware and software. Programmable logic devices
can be programmed to perform specified logic functions by the manufacturer or by the
user. One advantage of programmable logic over fixed-function logic 1s that the devices
use much less board space for an equivalent amount of logic. Another advantage is that,
with programmable logic, designs can be readily changed without rewiring or replacing
components. Also, a logic design can generally be implemented faster and with less cost
with programmable logic than with fixed-function ICs.

After completing this section, you should be able to

= State the major types of programmable logic and discuss the differences ® Discuss
methods of programming ® List the major programming languages used for
programmable logic = Discuss the programmable logic design process

Types of Programmable Logic Devices

Many types of programmable logic are available, ranging from small devices that can replace
a few fixed-function devices to complex high-density devices that can replace thousands of
fixed-function devices. Two major categorics of user-programmable logic are PLD (pro-

grammable logic device) and FPGA (field programmable gate array), as indicated in Figure
1-31. PLDs are either SPLDs (simple PLDs) or CPLDs (complex PLDs).

Programmable logic

FIGURE 1-31

Programmable logic. 1 1

PLDs FPGAs

SPLDs CPLDs

Simple Programmable Logic Device (SPLD) The SPLD was the original PLD and is still
available for small-scale applications. Generally, an SPLID can replace up to ten fixed-function
ICs and their interconnections. depending on the type of functions and the specific SPLD. Most
SPLDs are in one of two categories: PAL and GAL. A PAL (programmable array logic) 1s a
device that can be programmed one time. It consists of a programmable array of AND gates
and a fixed array of OR gates, as shown in Figure 1-32(a). A GAL (generic array logic) is a

—— — —= —% —>
— i po—. - — :
[— . T .u:>_ Fixed OR _E/

I | Fixed OR r I [3 _ I

I Programmable | | I Reprogrammable | array and I

' AND array ! argyand ‘ ! AND arra ' rogrammable |

| > | output logic | | Kray | Pros : |

[[| | | output logic |
(a) PAL (b) GAL

FIGURE 1-32

Block diagrams of simple programmable logic devices (SPLDs).

device that is basically a PAL that can be reprogrammed many tumes. It consists of a repro-
orammable array of AND gates and a fixed array of OR gates with programmable ouputs, as
shown in Figure 1-32(b). A typical SPLD package is shown in Figure 1-33 and generally has
from 24 to 28 pins.

FIGURE 1-33

Typical SPLD package.

Complex Programmable Logic Device (CPLD) As technology progressed and the
amount of circuitry that could be put on a chip (chip demnsity) increased, manufacturers were
able to put more than one SPLD on a single chip and the CPLD was born. Essentially. the
CPLD 1s a device containing multiple SPLDs and can replace many fixed-function ICs.
Figure 1-34 shows a basic CPLD block diagram with four logic array blocks (LABs) and
a programmable interconnection array (PIA). Depending on the specific CPLD, there can
be from two to sixty-four .ABs. Each logic array block is roughly equivalent to one SPLD.

oy — ——— —
= 3 3 ——
| LAB | | LAB |
I
| i I |
: | | | i .
| I
: PIA }
""EE&}_ R~ 5.9 S
| LAB : | LAB :
|
| | | |
—— p U3 L ! '—f""““’_.mw

Generally, CPLDs can be used to implement any of the logic functions discussed earlier,
for example, decoders, encoders, multiplexers, demultiplexers, and adders. They are avail-
able in a variety of configurations, typically ranging from 44 to 160 pin packages. Exam-
ples of CPLD packages are shown in Figure 1-35.

FIGURE 1-35

Typical CPLD packages.

O Tl

P oy i bon P waad deadtnbina¥s

(a) 84-pin PL.CC package (b) 128-pin PQFP package

Field Programmable Gate Array (FPGA) An FPGA is generally more complex and has
a much higher density than a CPLD. although their applications can sometimes overlap. As
mentioned, the SPLD and the CPLD are closely related because the CPLD basically con-
tains a number of SPLDs. The FPGA, however, has a different internal structure (architec-

ture), as illustrated in Fagure 1-36. The three basic elements in an FPGA are the logic block.
the programmable interconnections, and the input/output (I/0O) blocks.

/0 /O 10 - 7/_ - /O
block block block / block
10 1’0
block block
FIGURE 1-36
Logic Logic Fopicl S Logic
block block biock black Basic structure of an FPGA.
1/0 /O
block block
Logic Logic Logic® — = 0 Logic
block block block block
10 11/8]
block i | | | block
| : 1 |
: I ! ! i :
| ! ! 1
| I
| 1
: Logic Logic Logic Logic :
block block block block
/O IO
block block
IO 1O s - 1/0

block block block block

The logic blocks in an FPGA are not as complex as the logic array blocks (LABS) in a
CPLD, but generally there are many more of them. When the logic blocks are relatively
simple, the FPGA architecture is called fine-grained. When the logic blocks are larger and
more complex, the architecture is called coarse-grained. The 1/0 blocks are on the outer
edges of the structure and provide individually selectable input, output, or bidirectional ac-
cess to the outside world. The distributed programmable interconnection matrix provides
for interconnection of the logic blocks and connection to inputs and outputs. L.arge FPGAs
can have tens of thousands of logic blocks 1n addition to memory and other resources. A

typical FPGA ball-grid array package 1s shown in Figure 1-37. These types of packages can
have over 1000 input and output pins.

FIGURE 1-37
A typical ball-grid array package
— configuration.
000000CO0OCO000O0O0O0D0 D
000000 COO0O0OOOCO0OO D
lellelolelolsiolofelofolclolofolofolslele; D
lelleloRolelofofoNolofolclofoReNoNoReNoRe) D
0000 0000 D
0000 Q000 D
CCO00O 0000 D
0000 CCOO0 D
0000 0000 D
OCO0O0 C000 D
lalelale) Q000 Y
0000 Co0O0 D
0000 0000 D
0000 0000 D
0000 QO0O0 D
OCOO0 OO0 P
cOCO000000000O0000Q00O D
0000000000000 0O000O000 p
OOOOOCOOOLOO0O0O0DCCO00 ;

[eYolelolelodolclofolelcloNololoNeRoloNo)

The Programming Process

An SPLD, CPLD, or FPGA can be thought of as a “blank slate” on which you implement
a specified circuit or system design using a certain process. This process requires a software
development package installed on a computer to implement a circuit design in the pro-
grammable chip. The computer must be interfaced with a development board or program-
ming fixture containing the device. as illustrated in Figure 1-38.

y-

(Software CD J

Computer running
HDL. software

\

Interface
cable

L

FIGURE 1-38

Basic configuration for programming
a PLD or FPGA.

Programmable device
installed on a
development board
and interconnected
with other devices on
the board tnot shown)

‘—l —:—_ i h—r-_ -

Several steps, called the design flow, are involved in the process of implementing a dig-
ital logic design in a programmable logic device. A block diagram of a typical programming
process is shown in Figure 1-39. As indicated, the design flow has access to a design library.

Several steps, called the design flow, are involved in the process of implementing a dig-
ital logic design in a programmable logic device. A block diagram of a typical programming
process 1s shown 1n Figure 1-39. As indicated, the design flow has access to a design library.

Design Entry This 1s the first programming step. The circuit or system design must be en-
tered mto the design application software using text-based entry, graphic entry (schematic
capture), or state diagram description. Design entry is device independent. Text-based en-
try 1s accomplished with a hardware description language (HDL) such as VHDL, Verilog,

FIGURE 1-39
Basic programmable logic design Design entry
flow block diagram.
!
Design Functional
library : simulation

Synthesis

Implementation

l

Timing
simulation

|

Download

Compiler

AHDL, or ABEL. Graphic (schematic) entry allows prestored logic functions from a library
to be selected, placed on the screen, and then interconnected to create a logic design. State-
diagram entry requires specification of both the states through which a sequential logic cir-
cuit progresses and the conditions that produce each state change.

Once a design has been entered, it is compiled. A compiler 1s a program that controls
the design flow process and translates source code into object code in a format that can be
logically tested or downloaded to a target device. The source code is created during design
entry, and the object code is the final code that actually causes the design to be implemented
in the programmable device.

Functional Simulation The entered and compiled design 1s simulated by software to
confirm that the logic circuit functions as expected. The simulation will verify that cor-
rect outputs are produced for a specified set of inputs. A device-independent software tool
for doing this is generally called a waveform editor. Any flaws demonstrated by the sim-
ulation would be corrected by going back to design entry and making appropriate changes.

Synthesis Synthesis is where the design 1s translated into a netlist, which has a standard
form and is device independent.

Implementation Implementation i1s where the logic structures described by the netlist
are mapped into the actual structure of the specific device being programmed. The imple-
mentation process is called fitting or place and route and results in an output called a bit-
stream, which 1s device dependent.

Timing Simulation This step comes after the design is mapped into the specific device.
The timing simulation is basically used to confirm that there are no design flaws or timing
problems due to propagation delays.

Download Once a bitstream has been generated for a specific progranumable device, it has
to be downloaded to the device to implement the software design in hardware. Some pro-
grammable devices have to be installed in a special piece of equipment called a device pro-
grammer or on a development board. Other types of devices can be programmed while in a
system—called 1in-system programming (ISP)—using a standard JTAG (Joint Test Action
Group) interface. Some devices are volatile, which means they lose their contents when re-
set or when power 1s turned off. In this case, the bitstream data must be stored in a memory
and reloaded into the device alter each reset or power-off. Also, the contents of an ISP de-
vice can be manipulated or upgraded while it 1s operating in a system. This is called “on-
the-fly” reconfiguration.

ISECTION 1-6
| REVIEW 1. List three major categories of programmable logic devices and specify their acronyms.

2. How does a CPLD differ from an SPLD?

3. Name the steps in the programming process.

4. Briefly explain each step named in question 3.

1-7 TEST AND MEASUREMENT INSTRUMENTS

Troubleshooting is the process of systematically 1solating, identitying. and correcting
a fault in a circuit or system. A variety of instruments are available for use 1n
troubleshooting and testing. Some common types of instruments are introduced and
discussed in this section.

After completing this section, you should be able to

® Distinguish between an analog and a digital oscilloscope ® Recognize common
oscilloscope controls ® Determine amplitude, period, frequency, and duty cycle of a
pulse waveform with an oscilloscope ® Discuss the logic analyzer and some common

formats = Describe the purpose of the dc power supply, function generator, and digital
multimeter (DMM)

The Oscilloscope

The oscilloscope (scope for short) is one of the most widely used instruments for general
testing and troubleshooting. The scope is basically a graph-displaying device that traces the
graph of a measured electrical signal on its screen. In most applications, the graph shows
how signals change over time. The vertical axis of the display screen represents voliage, and
the horizontal axis represents time. Amplitude, period. and frequency of a signal can be
measured using the oscilloscope. Also, the pulse width, duty cycle, rise time, and fall time
of a pulse waveform can be determined. Most scopes can display at least two signals on the
screen at one time, enabling their time relationship to be observed. A typical oscilloscope
is shown in Figure 1-40.

FIGURE 1-40

A typical dual-channel oscilloscope.
Used with permission from Tektronix,

Inc.

Two basic types of oscilloscopes. analog and digital. can be used to view digital wave-
torms. As shown in Figure 1-41(a), the analog scope works by applying the measured
waveform directly to control the up and down motion of the electron beam in the cathode-
ray tube (CRT) as it sweeps across the display screen. As a result. the beam traces out the
waveform pattern on the screen. As shown in Figure 1-41(b), the digital scope converts
the measured waveform to digital information by a sampling process in an analog-to-
digital converter (ADC). The digital information is then used to reconstruct the waveform
on the screen.

The digital scope is more widely used than the analog scope. However, either type can
be used 1n many applications. each has characteristics that make it more suitable for cer-
tain situations. An analog scope displays waveforms as they occur in “real time.” Digital
scopes are useful for measuring transient pulses that may occur randomly or only once.
Also, because information about the measured waveform can be stored in a digital scope,
it may be viewed at some later time, printed out, or thoroughly analyzed by a computer or
other means.

ADC

' FIGURE 1-41

Comparison of analog and digital

oscilloscopes.

(a) Analog (b) Digital

Basic Operation of Analog Oscilloscopes 'To measure a voltage, a probe must be con-
nected from the scope to the point in a circuit at which the voltage is present. Generally,
a x10 probe is used that reduces (attenuates) the signal amplitude by ten. The signal
goes through the probe into the vertical circuits where it is either further attenuated or
amplified, depending on the actual amplitude and on where you set the vertical control
of the scope. The vertical circuits then drive the vertical deflection plates of the CRT.
Also, the signal goes to the trigger circuits that trigger the horizontal circuits to initiate
repetitive horizontal sweeps of the electron beam across the screen using a sawtooth
waveform. There are many sweeps per second so that the beam appears to form a solid
line across the screen in the shape of the waveform. This basic operation is illustrated in
Figure 1-42.

Oscilloscope FIGURE 1-42
Vertical circuits Block diagram of an analog

oscilloscope.

%%

‘Trigger circuits » Horizontal circuits

Y

Basic Operation of Digital Oscilloscopes Some parts of a digital scope are similar to the
analog scope. However, the digital scope is more complex than an analog scope and typi-
cally has an LCD screen rather than a CRT. Rather than displaying a waveform as it occurs,
the digital scope first acquires the measured analog waveform and converts it to a digital
format using an analog-to-digital converter (ADC). The digital data 1s stored and processed.

Oscilloscope T
Acquisition circuiis
Processing
&
. AM 1010011010 |
Vertical circuits J
» ADC » Memory

A |

1wio011010 Reconstruction
» and display
v circuits

Trigger circuits ——— Horizontal circuits

FIGURE 1-43

Block diagram of a digital oscilloscope.

The data then goes to the reconstruction and display circuits for display 1n its original ana-
log form. Figure 1-43 shows a basic block diagram for a digital oscilloscope.

Oscilloscope Controls A front panel view of a typical dual-channel oscilloscope 1s shown
in Figure 1-44. Instruments vary depending on model and manufacturer, but most have cer-
tain common features. For example, the two vertical sections contain a Position control, a
channel menu button, and a V/div control. The horizontal section contains a sec/div control.

o

VERTICAL i i HORIZONTAL “i . TRIGGER

{posmonb

LEVEL

CURSOR 1 Q CURSOR 2 P
TRIGGER MENU

S| 9 g

FORCE TRIGGER

TRIGGER VIEW

Cht 300 m¥ Ch2 200 mV 500 ms

FIGURE 1-44

A typical dual-channel oscilloscope. Numbers below screen indicate the values for each division on
the vertical (voltage) and horizontal (time) scales and can be varied using the vertical and horizontal
controls on the scope.

Some of the main oscilloscope controls are now discussed. Refer to the user manual for
complete details of your particular scope.

Vertical Controls In the vertical section of the scope in Figure 1-44, there are identical
controls for each of the two channels (CH1 and CH2). The Position control lets you move
a displayed waveform up or down vertically on the screen. The Menu button provides for
the selection of several items that appear on the screen, such as the coupling modes (ac, dc,
or ground), coarse or fine adjustment for the V/div, probe attenuation, and other parame-
ters. The V/div control adjusts the number of volts represented by each vertical division on
the screen. The V/div setting for each channel is displayed on the bottom of the screen. The
Math Menu button provides a selection of operations that can be performed on the input
waveforms, such as subtraction, addition, or inversion.

Horizontal Controls In the horizontal section, the controls apply to both channels. The
Position control lets you move a displayed waveform left or right horizontally on the screen.
The Menu buiton provides for the selection of several items that appear on the screen such
as the main time base, expanded view of a portion of a waveform, and other parameters.
The sec/div control adjusts the time represented by each horizontal division or main time
base. The sec/div setting is displayed at the bottom of the screen.

Irigger Controls In the Trigger control section, the Level control determines the point on
the triggering waveform where triggering occurs to initiate the sweep to display input wave-
forms. The Menu button provides for the selection of several items that appear on the
screen, including edge or slope triggering, trigger source, trigger mode, and other parame-
ters. There is also an input for an external trigger signal.

Triggering stabilizes a waveform on the screen or properly triggers on a pulse that oc-
curs only one time or randomly. Also, it allows you to observe time delays between two
waveforms. Figure 1-45 compares a triggered to an untriggered signal. The untriggered sig-
nal tends to drift across the screen, producing what appears to be multiple waveforms.

FIGURE 1-45

Comparison of an untriggered and a
triggered waveform on an
oscilloscope.

(a) Untriggered waveform display (b) Triggered waveform display

Coupling a Signal into the Scope Coupling is the method used to connect a signal volt-
age to be measured into the oscilloscope. DC and AC coupling are usually selected from
the Vertical menu on a scope. DC coupling allows a waveform including its dc component
to be displayed. AC coupling blocks the dc component of a signal so that you see the wave-
form centered at 0 V. The Ground mode allows you to connect the channel input to ground
to see where the O V reference is on the screen. Figure 1-46 illustrates the result of DC and
AC coupling using a pulse waveform that has a dc component.

The voltage probe, shown in Figure 1-47, is essential for connecting a signal to the
scope. Since all instruments tend to affect the circuit being measured due to loading, most
scope probes provide a high series resistance to minimize loading effects. Probes that

0oV

(a) DC coupled waveform (b} AC coupled waveform

FIGURE 1-47

An oscilloscope voltage probe. Used
with permission from Tektronix, Inc.

have a series resistance ten times larger than the input resistance of the scope are called
x10 probes. Probes with no series resistance are called X1 probes. The oscilloscope ad-
justs its calibration for the attenuation of the type of probe being used. For most meas-
urements, the x10 probe should be used. However, if you are measuring very small
signals, a X1 may be the best choice.

The probe has an adjustment that allows you to compensate for the input capacitance of
the scope. Most scopes have a probe compensation output that provides a calibrated square
wave for probe compensation. Before making a measurement, you should make sure that
the probe is properly compensated to eliminate any distortion introduced. Typically, there
1s a screw or other means of adjusting compensation on a probe. Figure 1-48 shows scope
waveforms for three probe conditions: properly compensated, undercompensated, and
overcompensated. If the waveform appears either over- or undercompensated, adjust the
probe until the properly compensated square wave 1s achieved.

Properly compensated Undercompensated Overcompensated

FIGURE 1-48

Probe compensation conditions.

| EXAMPLE 1-3
Based on the readouts, determine the amplitude and the period of the pulse waveform

on the screen of a digital oscilloscope as shown in Figure 1-49. Also, calculate the
frequency.

FIGURE 1-49

Solution The V/div setting is 1 V. The pulses are three divisions high. Since each division
represents 1V, the pulse amplitude is

Amplitude = (3 div)(1 V/div) =3V

The sec/div setting 1s 10 us. A full cycle of the wavetorm (from beginning of one
pulse to the beginning of the next) covers four divistons; therefore, the period 1s

Period = (4 div)(10 ps/div) = 40 ps
The frequency is calculated as

1
40 us

1
=— = 25kH
f=7 z

The Logic Analyzer

Logic analyzers are used for measurements of multiple digital signals and measurement sit-
uations with difficult trigger requirements. Basically, the logic analyzer came about as a re-
sult of microprocessors in which troubleshooting or debugging required many more inputs
than an oscilloscope offered. Many oscilloscopes have two input channels and some are
available with four. Logic analyzers are available with from 34 to 136 input channels. Gen-
erally. an oscilloscope is used either when amplitude. frequency, and other timing parame-
ters of a few signals at a time or when parameters such an rise and fall imes, overshoot, and
delay times need to be measured. The logic analyzer is used when the logic levels of a large
number of signals need to be determined and for the correlation of simultaneous signals
based on their iming relationships. A typical logic analyzer 1s shown in Figure 1-50, and
a simplified block diagram is in Figure 1-31.

Data Acquisition The large number of signals that can be acquired at one time 1s a major
factor that distinguishes a logic analyzer from an oscilloscope. Generally, the two types of
data acquisition in a logic analyzer are the timing acquisition and the state acquisition. Tim-
ing acyuisition is used primarily when the timing relationships among the various signals

FIGURE 1-50

Typical logic analyzer. Used with
permission from Tektronix, Inc.

/

—————
——
N . —— [nput buffer oL Analysis
C :_san‘n;c! | o Acquisition snd
s i sampling HEDRLY display
—_— e
I FIGURE 1-51
o Trigger logic Simrliﬁ'ed block diagram of a logic
- and memory analyzer.
circuits
control

need to be determined. State acquisition is used when you need to view the sequence of

states as they appear in a system under test.
It is often helpful to have correlated timing and state data. and most logic analyzers can

simultaneously acquire that data. For example, a problem may initially be detected as an in-
valid state. However, the invalid condition may be caused by a timing violation in the sys-
tem under test. Without both types of information available at the same time, isolating the
problem could be very difficult.

Channel Count and Memory Depth Logic analyzers contain a real-time acquisition
memory in which sampled data from all the channels are stored as they occur. Two features
that are of primary importance are the channel count and the memory depth. The acquisi-
tion memory can be thought of as having a width equal to the number of channels and a
depth that 1s the number of bits that can be captured by each channel duning a certain time
interval.

Channel count determines the number of signals that can be acquired simultaneously. In
certain types of systems, a large number of signals are present, such as on the data bus in a
microprocessor-based system. The depth of the acquisition memory determines the amount
of data from a given channel that you can view at any given time.

Analysis and Display Once data has been sampled and stored in the acquisition memory,
it can typically be used in several different display and analysis modes. The waveform dis-
play is much like the display on an oscilloscope where you can view the time relationship
of multiple signals. The listing display indicates the state of the system under test by show-

ing the values of the input waveforms (1s and Os) at vartous points in time (sample points).
Typically, this data can be displayed in hexadecimal or other formats. Figure 1-52 shows
simplified versions of these two display modes. The listing display samples correspond to
the sampled points shown in red on the waveform display. You will study bmary and hexa-
decimal (hex) numbers in the next chapter.

HDJTP.UUD

o A g | e d

L
£ » ' L] (] " "
- 4 s ’ '
1 ' [V" g "
- —) L._‘.__ S
i . '
3 [. |
i ' '
. i [\

- - -

12345678
(a) Waveform display (b) Listing display

Two more modes that are useful in computer and microprocessor-based system test-
ing are the instruction trace and the source code debug. The instruction trace determines
and displays instructions that occur, for example, on the data bus in a microprocessor-
based system. In this mode the op-codes and the mnemonics (English-like names) of in-
structions are generally displayed as well as their corresponding memory address. Many
logic analyzers also include a source code debug mode, which essentially allows you to
see what is actually going on in the system under test when a program instruction is
executed.

Probes Three basic types of probes are used with logic analyzers. One is a multichannel
compression probe that can be attached to points on a circuit board, as shown in Figure 1-53.
Another type of multichannel probe, similar to the one shown, plugs into dedicated sockets
mounted on a circuit board. A third type is a single-channel clip-on probe.

FIGURE 1-53

A typical multichannel logic analyzer
probe. Used with permission from
Tektronix, Inc.

Signal Generators

Logic Signal Source These instruments are also known as pulse generators and pattern
generators. They are specifically designed to generate digital signals with precise edge

placement and amplitudes and to produce the streams of 1s and Us needed to test computer
buses, microprocessors, and other digital systems.

Arbitrary Waveform Generators and Function Generators The arbitrary waveform
generator can be used to generate standard signals like sine waves, triangular waves, and
pulses as well as signals with various shapes and characteristics. Waveforms can be de-
fined by mathematical or graphical input. A typical arbitrary waveform generator is shown
in Figure 1-54(a).

The function generator provides pulse waveforms as well as sine waves and triangular
waves. Most function generators have logic-compatible outputs to provide the proper

level and drive for inputs to digital circuits. Typical function generators are shown 1n
Figure 1-54(b).

(a) An arbitrary waveform generator. (b)Y Examples of function generators.

FIGURE 1-54

Typical signal generators. Used with permission from Tektronix, Inc.

The Logic Probe and Logic Pulser The logic probe is a convenient, inexpensive hand-
held tool that provides a means of troubleshooting a digital circuit by sensing various
conditions at a point in a circutt, as i1llustrated in Figure 1-55. The probe can detect high-
level voltage, low-level voliage, single pulses, repetitive pulses, and opens on a PC

Logic pulser Lamp on = HIGH

//

... Lamp off = LOW

One flash = single pulse

Repetitive flashes = pulses

Mﬁl

FIGURE 1-55

llustration of how a logic pulser and a logic probe can be used to apply a pulse to 2 given point and
check for resulting pulse activity at another part of the circuit.

board. The probe lamp indicates the condition that exists at a certain point, as indicated

in the figure.
The logic pulser produces a repetitive pulse waveform that can be applied to any point
in a circuit. You can apply pulses at one point in a circuit with the pulser and check another

point for resulting pulses with a logic probe.

Other Instruments

The DC Power Supply This instrument is an indispensable instrument on any test bench.
The power supply converts ac power from the standard wall outlet into regulated dc volt-
age. All digital circuits require dc voltage. Many logic circuits require +5V or +3.3 V to
operate. The power supply is used to power circuits during design, development, and trou-
bleshooting when in-system power is not available. Typical test bench dc power supplies

are shown in Figure 1-56.
FIGURE 1-56

Typical dc power supplies. Courtesy
" ’ of B-+K Precision.®

The Digital Multimeter (DMM) The DMM is used for measuring dc and ac voltage and
resistance. Figure 1-57 shows typical test bench and handheld DMMs.

FIGURE 1-57
Typical DMMs. Courtesy of B+K

Precision.®

| SECTION 1-7
REVIEW

1. What is the main difference between a digital and an analog oscilloscope?
2. Name two main differences between a logic analyzer and an oscilloscope?
3. What does the V/div control on an oscilloscope do?

4. What does the sec/div control on an oscilloscope do?

5. What is the purpose of a function generator?

On-site display

L e o
Encoder Decoder - k ;
_ Register 7 : ""n
Number of
Keypad for entering tablets per bottle
number of tablets
per bortle Binary code for preset number

Code of tablets per bottle

HIGH closes valve On-site display of

and advances Binary code for — . total tablets bottled
\ conveyor. LOW actual number of | 2L AW IMETE
keeps valve open. tablets in bortle — n
Ve X _ i ..
; New total 55 ()
Valve i e
Sensor - < i x mﬂ'ﬁ" Register g
One pulse B £
from sensor T Code Decoder
for each tablet out PN B

| G

Conveyor — advancc::) 1 HIGH causes new B 6"*
Eoutrol T SCLAER LY 2 i ~sum to be slored
Pulse resels counter to zero MUX

when next bottle is in place.
o

Current total sum

A binary code for the total number of tablets is wansferred in serial form G%
along this line for remote display and computer inventory control. AN
- s — — — - 4-_._.-_._-.-—-.-.1‘——-—.
Switching sequence
e control input
DEMUX Decoder

e wash Register C !ﬁ* E U'I* 55{-}
‘i“ Remote unit

FIGURE 1-58
Simplified basic block diagram for a tablet-counting and bottling control system.

SUMMARY

An analog quantity has continuous values.
A digital quantity has a discrete set of values.
A binary digit is called a bit.

A pulse is characterized by rise time, fall time, pulse width, and amplitude.

The trequency of a periodic wavetorm is the reciprocal of the period. The formulas relating
frequency and period are

The duty cycle of a pulse waveform is the ratio of the pulse width to the period, expressed by
the following formula as a percentage:

tw
Duty cycle = (—i;) 100%

A timing diagram is an arrangement of two or more waveforms showing their relationship with
respect to time.

Three basic logic operations are NOT, AND. and OR. The standard symbols for these are given
in Figure 1-59.

FIGURE 1-59 E ED— @

NOT AND OR

SUMMARY

®m The basic logic functions are comparison, arithmetic, code conversion, decoding, encoding, data
selection, storage, and counting.

®m The two broad physical categories of 1C packages are through-hole mounted and surface
mounted.

®m The categories of ICs m terms of circuit complexity are SSI (small-scale integration), MSI
(medium-scale integration), LSI, VLSI, and ULSI (large-scale, very large-scale, and ultra large-
scale integration).

w Two types of SPLDs (simple programmable logic devices) are PAL (programmable array logic)
and GAL (generic array logic).

® The CPLD (complex programmable logic device) contains multiple SPLDs with programmable
interconnections.

w The FPGA (field programmable gate array) has a different internal structure than the CPLD and
1s generally used for more complex circuits and systems.

® Common instruments used in testing and troubleshooting digital circuits are the oscilloscope,
logic analyzer, waveform generator. function generator. dc power supply, digital multimeter.
logic probe, and logic pulser.

KEY TERMS

Analog Being continuous or having continuous values.

AND A basic logic operation in which a true (HIGH) output occurs only when all the input condi-
tions are true (HIGH).

Binary Having two values or states; describes a number system that has a base of two and utilizes 1
and 0 as 1ts digits.

Bit A binary digit, which can be either a 1 or a 0.

Clock The basic timing signal in a digital system; a periodic waveform in which each interval be-
tween pulses equals the time for one bit.

Compiler A program that controls the design flow process and translates source code into object code
in a format that can be logically tested or downloaded to a target device.

CPLD A complex programmable logic device that consists basically of multiple SPLD arrays with
programmable interconnections.

Data Information in numeric, alphabetic. or other form.

Digital Related to digits or discrete quantities; having a set of discrete values.

FPGA Field programmable gate array.
Gate A logic circuit that performs a specified logic operation such as AND or OR.

Input The signal or line going into a circuit.

KEY TERMS

Integrated circuit (IC) A type of circuit in which all of the components are integrated on z single
chip of semiconductive material of extremely small size.

Inverter A NOT circuit; a circuit that changes a HIGH to a LOW or vice versa.

Logic In digital electronics, the decision-making capability of gate circuits, in which a HIGH repre-
sents a true statement and a LOW represents a false one.

NOT A basic logic operation that performs inversions.

OR A basic logic operation in which a true (HIGH) output occurs when one or more of the input con-
ditions are true (HIGH).

Output The signal or line coming out of a circuit.

Parallel In digital systems, data occurring simultaneously on several lines; the transfer or processing
of several bits simultaneously.

Pulse A sudden change from one level to another. followed after a time. called the pulse width. by a
sudden change back to the original level.

Serial Having one element following another, as in a serial transfer of bits; occurring in sequence
rather than simultaneously.

SPLD Simple programmable logic device.
Timing diagram A graph of digital waveforms showing the time relationship of two or more waveforms.

Troubleshooting The technique or process of systematically identifying, isolating, and correcting a
fault 1n a circuit or system.

Digital
Fundamentals

Tenth Edition
Floyd
o.c.-.'\‘ito ‘ ,".! ‘ i‘

.tii

Decimal Numbers

The position of each digit in a weighted number system 1s

assigned a weight based on the base or radix of the system.
The radix of decimal numbers is ten, because only ten
symbols (0 through 9) are used to represent any number.

The column weights of decimal numbers are powers
of ten that increase from right to left beginning with 10° =1: i

...10° 10 103 102 10" 10°.
For fractional decimal numbers, the column weights
are negative powers of ten that decrease from left to right:

102 10" 10°. 10°" 102 102 104 ...

[-

Floyd, Digital Iaundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Decimal Numbers

Decimal numbers can be expressed as the sum of the
products of each digit times the column value for that digit.
Thus, the number 9240 can be expressed as

(9 x 103) + (2 x10%) + (4 x 101 + (0 x 109)

or i
9x1,000+2 x100+4x10+0x1 l

Express the number 480.52 as the sum of values of each
digit.

480.52=(4x10°) + (8 x 10H) + (0 x 109 + (5 x 10°") +(2 x 10-?)

r -»
Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

Summary

Binary Numbers

For digital systems, the binary number system 1s used.

Binary has a radix of two and uses the digits 0 and 1 to
represent quantities.

The column weights of binary numbers are powers of
two that increase from right to left beginning with 20 =1:

..2524232221 20, '
For fractional binary numbers, the column weights
are negative powers of two that decrease from left to right:

222120, 21222324

[-

Floyd, Digital Iaundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Decimal Binary
Number Number
Binary Numbers 0 0000
I [000[
A binary counting sequence for numbers 2 100 Q
from zero to fifteen 1s shown. 3 1 00]L
| | 4 | 000
Notice the pattern of zeros and ones 1n 5 ool
each column. 6 |0l g
Digital counters frequently have this ; %%(1) (17
same pattern of digits: o |floof
10 [{1jO1]0
Counter Decoder —
* L oulofifE
: = 12 ||1fjoo
- 13 ||tjtjo[f
I 14 11Ig
I EE R E = E 151 [

[
© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Binary Conversions

The decimal equivalent of a binary number can be

determined by adding the column values of all of the bits
that are 1 and discarding all of the bits that are 0.

Convert the binary number 100101.01 to decimal.
Start by writing the column weights; then add the I

weights that correspond to each 1 in the number.
25 24 23 22 2120 2-12-2
3216 8 4 2 1. % A
1 001 O0T1 01
32 +4 +1 +a= 3T7%

[-
Floyd, Digital I'l'lundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Binary Conversions

You can convert a decimal whole number to binary by
reversing the procedure. Write the decimal weight of each
column and place 1’s in the columns that sum to the decimal

number.

[-
1
Floyd, Digital F’lundamental

Summary

Convert the decimal number 49 to binary.

The column weights double in each position to the '
right. Write down column weights until the last
number 1s larger than the one you want to convert.
26 25 24 23 2221 20
643216 8 4 2 1.
O 1 100 0 I

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Binary Conversions

You can convert a decimal fraction to binary by repeatedly

multiplying the fractional results of successive
multiplications by 2. The carries form the binary number.

Convert the decimal fraction 0.188 to binary by
repeatedly multiplying the fractional results by 2. I

0.188 x2=0.376 carry = () MSB
0.376 Xx2=10.752 carry =0
0.752 x2=1.504 carry = |
0.504 x 2=1.008 carry = 1
0.008 x2=0.016 carry =0

Answer =.00110 (for five significant digits)

[-
Floyd, Digital I'l'lundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Binary Conversions

You can convert decimal to any other base by repeatedly

dividing by the base. For binary, repeatedly divide by 2:

Convert the decimal number 49 to binary by
repeatedly dividing by 2.

answer will read from left to right. Put quotients to
the left and remainders on top.

You can do this by “reverse division” and the '

Answer: 1 10 0 0 1 remainder
1

0 3612 24 49(2
e PSRN

Decimal base
number

Continue until the
last quotient is 0
r -
1
Floyd, Digital F’lundamental

Quotient

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Binary Addition

0+0=0
0+1=0
1+0=0
1+1=10

arc
1+0+0=01
1+0+1=10
1+1+0=10
1+1+1=10

The rules for binary addition are

Sum = 0, carry =0
Sum = 1, carry =0
Sum = 1, carry =0
Sum = 0, carry = 1

When an mput carry = 1 due to a previous result, the rules

Sum = 1, carry =0
Sum = 0, carry = 1
Sum = 0, carry = 1
Sum = 1, carry = 1

])
Floyd, Digital Fiundamenta! 10t ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

Sumimary

Binary Addition

Add the binary numbers 00111 and 10101 and show
the equivalent decimal addition.

0111

00111 7
10101 21

11100 =28 I

I -

Floyd, Digital Fllundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Floyd, Digital Fllundamenta| 10 ed

Sumimary

Binary Subtraction

The rules for binary subtraction are

0-0=0
1-1=0
1-0=1

10— 1=1 with a borrow of 1

Subtract the binary number 00111 from 10101 and
show the equivalent decimal subtraction.

111

10101 21
00111 7
01110 =14

I -

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

1’s Complement

The 1’s complement of a binary number 1s just the inverse
of the digits. To form the 1’s complement, change all 0’s to
1’s and all 1’s to 0’s.

For example, the 1’°s complement of 11001010 1s
00110101

In digital circuits, the 1’s complement 1s formed by using l
inverters: 1 1 0 0 1 0 1 0

Do o0 1o

Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

Sumimary

2’s Complement

The 2’s complement of a binary number 1s found by
adding 1 to the LSB of the 1’s complement.

Recall that the 1°s complement of 11001010 1s
OO 11 O 1 O 1 (1’s complement)

: To form the 2’s complement, add 1: +1
1 1 0 0 1 0 1 0 00110110(2’scomplement) I
1
o o 1] 1 o 1] o 1
Input bits
Adder Carirr3]/ -~ add D
Output bits (sum)

00 0 11 0 1l 1 0

r -»
Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

Summary

Signed Binary Numbers

There are several ways to represent signed binary numbers.

In all cases, the MSB 1n a signed number is the sign bit, that
tells you 1f the number is positive or negative.

Computers use a modified 2’s complement for
signed numbers. Positive numbers are stored in true form
(with a O for the sign bit) and negative numbers are stored '

in complement form (with a 1 for the sign bit).

For example, the positive number 58 1s written using 8-bits as
00111010 (true form).

N

Magnitude bits

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Signed Binary Numbers

Negative numbers are written as the 2°s complement of the

corresponding positive number.

The negative number —58 1s written as:
-5 8;1 10001 1\0 (complement form)

Sign bit Magnitude bits

An easy way to read a signed number that uses this notation is to
assign the sign bit a column weight of —128 (for an 8-bit number).
Then add the column weights for the 1°s.

Assuming that the sign bit = —128, show that 11000110 = —58
as a 2’s complement signed number:

Column weights: —128 64 32 16 8

4
1 T 0 0 0 1
—128 +64 +4

2 1
1 0
2 =-58

[-
Floyd, Digital I'l'lundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Floating Point Numbers

Floating point notation is capable of representing very
large or small numbers by using a form of scientific

notation. A 32-bit single precision number 1s 1llustrated.
S |E (8 bits) F (23 bits)
Sign bit Biasl,ed exponent (+127) M\agnitude with MSB dropped

Express the speed of light, C, in single precision floating point
notation. (C=0.2998 x 10°)

In binary, c= 0001 0001 1101 1110 1001 0101 1100 0000,.

In scientific notation, ¢=1.001 1101 1110 1001 0101 1100 0000 x 228.
S = 0 because the number is positive. E =28 + 127 =155,,= 1001 1011,.
F is the next 23 bits after the first 1 is dropped.

In floating point notation, C = | 0 |{10011011 (001 1101 1110 1001 0101 1100

r -»
Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

Arithmetic Operations with Signed Numbers

Using the signed number notation with negative
numbers 1n 2’s complement form simplifies addition

and subtraction of signed numbers.

Rules for addition: Add the two signed numbers. Discard
any final carries. The result 1s 1n signed form.
Examples:

00011110 =+30 00001110 =+14 1111111 = —1
00001111 =+15 11101111 =17 11111000 = -8

00101101 =+45 11111101 = -3 411110111 = -9

Discard carry

r -
Floyd, Digital Fllundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Arithmetic Operations with Signed Numbers

Note that 1f the number of bits required for the answer is

exceeded, overflow will occur. This occurs only 1f both
numbers have the same sign. The overflow will be
indicated by an incorrect sign bit.

Two examples are:

01000000 = +128 10000001 = —127
01000001 =+129 10000001 = —127
10000001 = 126~ Discard carry — 00000010 = 22—

Wrong! The answer is incorrect
and the sign bit has changed.

r -
Floyd, Digital Fllundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Arithmetic Operations with Signed Numbers

Rules for subtraction: 2’s complement the subtrahend and
add the numbers. Discard any final carries. The result 1s in

signed form.
Repeat the examples done previously, but subtract:

00011110 (+30) 00001110 (+14) II111111 (—1)
— 00001111 —(+15) —11101111 —(-17) — 11111000 —(-8)

2’s complement subtrahend and add:

00011110 =+30 00001110 =+14 11111111 = -1
11110001 =15 00010001 =+17 00001000 = +8

400001111 =+15 00011111 =+31 400000111 =+7

Discard carry Discard carry

[-
Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Decimal | Hexadecimal | Binary

, , 1] 0001
Hexadecimal uses sixteen characters to 9 7 0010
represent numbers: the numbers 0 3 3 0011
through 9 and the alphabetic characters 4 4 0100
A through F. > . OO
, , 6 6 0110

Large binary number can easily 7 7 0111

be converted to hexadecimal by 8 8 1000

grouping bits 4 at a time and writing 9 9 1001 I

the equivalent hexadecimal character. i(l) g }81(1)
Express 1001 0110 0000 1110, in 12 C 1100
hexadecimal: 13 D 1101

Group the binary number by 4-bits 14 E 1110

starting from the right. Thus, 960E 15 Ie 1111

| -

Floyd, Digital Iaundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Decimal | Hexadecimal | Binary
Hexadecimal Numbers 0 0 0000
1 1 0001
Hexadecimal 1s a weighted number 2 2 0010
system. The column weights are 3 3 0011
powers of 16, which increase from 4 4 0100
: ight to left A I
g : 6 6 0110
: 163 162 16! 16° 7 7 O111
Column weights 4096 256 16 1 g g 1000
9 9 1001
Express 1A2F . in decimal. 10 A 1010
11 B 1011
Start by writing the column weights: 19 C 1100
4006 256 16 1 13 D 1101
LA 2 F 14 E |1110
1(4096) + 10(256) +2(16) +15(1) = 6703, 15 F 1111

| .

1 ¥
Floyd, Digital F}undamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Decimal | Octal Binary

_ 1 1 0001

Octal uses eight characters the numbers 7) 0010
0 through 7 to represent numbers. 3 3 0011
There is no 8 or 9 character in octal. 4 4 0100
Binary number can easily be 2 2 8}(1)5
converted to octal by grouping bits 3 at 7 7 0111
a time and writing the equivalent octal 8 10 | 1000

character for each group. 9 11 1001 -

Express 1 001 011 000 001 110, in 1(1) g 18}(1)

octal: 12 | 14 | 1100

Group the binary number by 3-bits 13 15 1101

starting from the right. Thus, 1130164 14 16 1110

15 17 1111

| -

Floyd, Digital Iaundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Octal Numbers

Octal 1s also a weighted number

system. The column weights are

powers of 8, which increase from right
g to left.

g 8§ 8 8§,

Column weights 512 64 8 1

Express 3702 in decimal.

Start by writing the column weights:
512 64 8 1
3 7 0 24

3(512) + 7(64) +0(8) +2(1) = 1986,

Decimal | Octal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
2 2 0100
5 5 0101
6 6 0110
7 7 0111
8 10 1000
9 11 1001
10 12 1010
11 13 1011
12 14 1100
13 15 1101
14 16 1110
15 17 1111

| -
1
Floyd, Digital F}undamental

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

BCD

Binary coded decimal (BCD) 1s a
weighted code that 1s commonly
used 1n digital systems when it is
necessary to show decimal

The table 1llustrates the
difference between straight binary and
BCD. BCD represents each decimal
digit with a 4-bit code. Notice that the

codes 1010 through 1111 are not used in
BCD.

numbers such as in clock displays.

Decimal | Binary BCD
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
2 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 | 1010 | 00010000
11 | 1011 | 00010001
12 | 1100 | 00010010
13 | 1101 | 00010011
14 | 1110 | 00010100
15 | 1111 | 00010101

[-
1
Floyd, Digital F’;undamental

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

BCD

You can think of BCD 1n terms of column weights in

groups of four bits. For an 8-bit BCD number, the column
weights are: 80 40 20 10 8 4 2 1.

What are the column weights for the BCD number
1000 0011 0101 10017

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1 I

Note that you could add the column weights where there 1s
a 1 to obtain the decimal number. For this case:

8000 + 200 +100+40+ 10+ 8 +1 = 8359,

[-
Floyd, Digital I'l'lundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

BCD

Invalid Codes 1010, 1011, 1100, 1101, 1110, and 1111

Decimal to binary and Binary to decimal:

simply replace each decimal digit with the appropriate 4 bit
code, and vice versa.

r -
Floyd, Digital Fllundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

EXAMPLE 2-33

Convert each of the following decimal numbers to BCD:
¥ (a) 35 (b) 98 (c) 170 (d) 2469
Solution p= 5 ® 9 3
l l
00110101 10011000
@ 1 7 0 @@ 2 4 6 9
l 1 !l 1 1 |
000101110000 0010010001101001
Related Problem Convert the decimal number 9673 to BCD.

r -
Floyd, Digital Iiundamental 10t ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

EXAMPLE 2-34

Convert each of the following BCD codes to decimal:
(a) 10000110 (b) 001101010001 (c) 1001010001110000

Solution

(a) 10000110 (b) 001101010001 (¢) 1001010001110000 1
J, i A AN § ¢ L ! J,
8 6 3 5 1 9 4 7 0

Related Problem Convert the BCD code
1000001000100 1110110 to decimal.

Floyd, Digital I—Llundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

BCD Addition

Step 1. Add the two BCD numbers, using the rules for

binary addition 1n Section 2-4.

Step 2. If a 4-bit sum 1s equal to or less than 9, 1t 1s a valid
BCD number.

the 4-bit group 1s generated, 1t 1s an invalid result, Add 6
(0110) to the 4-bit sum 1n order to skip the six invalid
states and return the code to 8421. If a carry results when 6
1s added. simply add the carry to the next 4-bit group.

Step 3. If a 4-bit sum 1s greater than 9, or if a carry out of i

[-

1 .
Floyd, Digital Flundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

EXAMPLE 2-35

} (2) 0011 + 0100

Add the following BCD numbers:

(b) 00100011 + 00010101

(c) 10000110 + 0000011
(d) 010001010000 + 010000010111

r o~
Floyd, Digital Fllundamenta| 10 ed

1000001000100 1110110 to decimal.

Solution
The decimal number additions are shown for compalison.
(a) 0011 3 (b) 0010 0011 23
+ 0100 +4 + 0001 0101 + 15
0111 7 0011 1000 38
(c) 1000 0110 86 (d) 0100 0101 0000 450
+ 0001 0011 +13 + 0100 0001 0111 +417
1001 1001 99 1000 0110 0111 867
Related Problem Convert the BCD code

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

XAMPLE 2-36 Add the following BCD numbers

(a) 1001 + 0100 (b) 1001 + 1001
(¢) 00010110 + 00010101 (d) 01100111 + 01010011
. The decimal number additions are shown for comparison.
Solution
(a) 1001 5
+ 0100 4
1101 Invalid BCD number (>9) 13
+ 0110 Add 6
0001 0011 Valid BCD number
\: \
1 3
(b) 1001 9
+ 1001 +9

oo

I 0010 Invalid because of carry 1
+ 0110 Add 6
0001 1000 Valid BCD number

i1
| 8

r -
Floyd, Digital Fllundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

16
+15
0010 1011 Right group is invalid (>9), 31
left group is valid.
+ 0110 Add 6 to invalid code. Add
carry, 0001, to next group.
0011 0001 Valid BCD number
l
3 1
(d) 0110 0111 67
+ 0101 0011 + 353
1011 1010 Both groups are invalid (>9) 120
+ 0110 + 0110 Add 6 to both groups
0001 0010 0000 Valid BCD number
1) J |
1 2 0

r o~
Floyd, Digital Fllundamenta| 10 ed

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

\
Analog

e LY D DI

‘ D Signals Ar|l10e e a8 ‘TR E
L (R RN R ER T

L LR W aaa

LI | L L L

A lab experiment in which BCD

aaa e
- -

is converted to decimal is shown. EEEE

aaaaa

LR R
P T D T Dl Rl o S o e

AAAAA

RO NN NN NN NNNENNANESS SN
AN R R R RN NN EEENENEAER SR
R R EEREREEEREE R R

lllll'l‘
LR R R R R
PR R

:

|
Floyd, Digital I%undamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

Gray code 1s an unweighted code
that has a single bit change between
one code word and the next in a

§ sequence. Gray code 1s used to
avold problems 1n systems where an
error can occur 1f more than one bit
changes at a time.

Decimal | Binary | Gray code
0 0000 | 0000
1 0001 0001
2 0010 | 0011
3 0011 0010
4 0100 | 0110
5 0101 0111
6 0110 | 0101
fi 0111 0100
8 1000 | 1100
5 1001 1101
101010 11l
11011 1110
1201 1100 1010
1311101 1011
14 | 1110 1001
18 kLl 1000

| -
1
Floyd, Digital F}undamental

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Binary-to-Gray Code Conversion Conversion between binary code and Gray code 1s
sometimes useful. The following rules explain how to convert from a binary number to a
Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the

corresponding MSB in the binary number.

2. Going from left to nght, add each adjacent pair of binary code bits to get the next
Gray code bit. Discard carries.

For example, the conversion of the binary number 10110 to Gray code is as follows:

|t =4 —» | =+ —F |~ + >0 Binary
X \A 2) 1
1 | L 0 1 Gray

The Gray code 1s 11101.

I .]

Floyd, Digital Fllundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Gray-to-Binary Conversion To convert from Gray code to binary, use a similar method;
however, there arc some diffcrences. The following rules apply:

1. The most significant bit (lefti-most) in the binary code is the same as the
corresponding bit in the Gray code.

2. Add each binary code bit generated to the Gray code bit in the next adjacent
position. Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

] 1 " 0 5 1 P | Gray
B £ LT IR
] 0 0 1 U Binary

The binary number is 10010.

I .]

Floyd, Digital Fllundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

(a) Convert the binary number 11000110 to Gray code.

EXAMPLE 2-37

(b) Convert the Gray code 10101111 to binary.

(a) Binary to Gray code:

-+ 1-+—=0-+—>0-+—>0—+—2>1-+—>1-+—0
! \) J: d J l X !
1 0 1 0 0 1 0 1

(b) Gray code to binary:

1 0 1 0 1 1 | [
A
1 1 0 0 1 0 1 0

(a) Convert binary 101101 to Gray code. (b) Convert Gray code 100111 to binary.

r -
Floyd, Digital F"iundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Summary

A shaft encoder is a typical application. Three IR
emitter/detectors are used to encode the position of the shaft.

The encoder on the left uses binary and can have three bits
change together, creating a potential error. The encoder on the
. right uses gray code and only 1-bit changes, eliminating
potential errors.

001

Binary sequence

Gray code sequence

| .

1 ¥
Floyd, Digital F}undamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

ASCII 1s a code for alphanumeric characters and control
characters. In its original form, ASCII encoded 128
characters and symbols using 7-bits. The first 32 characters
are control characters, that are based on obsolete teletype
requirements, so these characters are generally assigned to
other functions in modern usage. I

In 1981, IBM introduced extended ASCII, which is an 8-
bit code and increased the character set to 256. Other
extended sets (such as Unicode) have been introduced to
handle characters in languages other than English.

| -

Floyd, Digital Iaundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

3-5 ERROR DETECTION AND CORRECTION CODES

Floyd, DigitaljRundamental$ 10" ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

3-5 ERROR DETECTION AND CORRECTION CODES

Parity Method

The parity method 1s a method of error detection for
simple transmission errors involving one bit (or an odd
number of bits). A parity bit 1s an “extra” bit attached to
a group of bits to force the number of 1’s to be either
even (even parity) or odd (odd parity).

The ASCII character for “a” is 1100001 and for “A” 1s
1000001. What 1s the correct bit to append to make both of
these have odd parity?

The ASCII “a” has an odd number of bits that are equal to 1;
therefore the parity bit 1s 0. The ASCII “A” has an even
number of bits that are equal to 1; therefore the parity bit1s 1.

I -

Floyd, Digital Fllundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Assign the proper even parity bit to the following code groups:
(a) 1010 (b) 111000 (¢) 101101
(d) 1000111001001 (e) 101101011111

Make the parity bit either 1 or O as necessary to make the total number of s even. The

parity bit will be the left-most bit (color).
(a) 01010 (b) 1111000 (c) 0101101
(d) 0100011100101 (e) 1101101011111

An odd parity system receives the following code groups: 10110, 11010, 110011,
110101110100, and 1100010101010. Determine which groups, if any, are in error.

Since odd parity is required, any group with an even number of 1s is incorrect. The
following groups are in error: 110011 and 1100010101010.

[-
1
Floyd, Digital F'lundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

m't!;j |
The Hamming Error Correction Code
A single parity bit allows for the detection of single-bit errors in
a code word.
In order to correct a detected error, more information 1s
required because the position of the bit in error also must be
1dentified.
So more than one parity bit must be included 1n a group of bits
| to be able to correct a detected error.
The Hamming code provides for single-error correction. l

r -»
Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

P: Number of Parity Bits;
d: number of data bits : d=4
2P > d+p+l

Let p=2. Then 2 =4 and d+p+l=4+2+1=7

Let p = 3. Then 2P = 8and d+p+1=4+3+1=8

So three parity bits are required to provide single-error e
correction for four data bits. l

The parity bits are located in the positions that are numbered
corresponding to ascending powers of two (1, 2,4, 8, ...), as
indicated;

r -»
Floyd, Digital Fiundamenta! 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved I

BIT DESIGNATION N S e SO R
BIT POSITION | 1 ga P ios e g
BINARY POSITION NUMBER | 001 | 011 | 100 | 101 | 110| 111

Data bits (D,)
Parity bits (P,)

Assignment of Parity Bit Values:

Group P1: (001,011,101,111) =(1,3,5,7)
Group P2: (010,011,110,111) =(2,3,6,7)
Group P3: (100,101,110, 111) = (4,5,6,7)

[-
Floyd, Digital Fiundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

[-
Floyd, Digital:Rundamental © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Sumimary

Cyclic Redundancy Check

The cyclic redundancy check (CRC) 1s an error detection method
that can detect multiple errors in larger blocks of data. At the
sending end, a checksum is appended to a block of data. At the
receiving end, the check sum is generated and compared to the sent
checksum. If the check sums are the same, no error is detected.

Diata bits plus appended bits Diata hitz plus appended hits

Femainder=10

¥ data bits —»

Femainder # 0

#-bit Generator code

[-
Floyd, Digital I—Llundamental 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Other-eoncepts

Consisting of numerals, letters, and other characters

Floyd, Digital Fundamentals, 10% ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Selected-Key Terms

Byte A group of eight bits

Floating-point A number representation based on scientific
number notation in which the number consists of an
exponent and a mantissa.

Hexadecimal A number system with a base of 16.

Octal A number system with a base of 8.

BCD Binary coded decimal; a digital code in which each
of the decimal digits, O through 9, 1s represented by
a group of four bits.

Floyd, Digital Fundamentals, 10% ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Selected-Key Terms

Alphanumeric Consisting of numerals, letters, and other
characters

ASCI| American Standard Code for Information
Interchange; the most widely used alphanumeric
code.

Parity In relation to binary codes, the condition of
evenness or oddness in the number of 1s in a code

group.

Cyclic A type of error detection code.
redundancy
check (CRC)

Floyd, Digital Fundamentals, 10% ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Quaz

1. For the binary number 1000, the weight of the column

with the 1 1s
a. 4
b. 6
c. 3
d. 10

© 2008 Pearson Education

Quaz

2. The 2’s complement of 1000 1s
a. 0111
b. 1000
c. 1001
d. 1010

© 2008 Pearson Education

Quaz

3. The fractional binary number 0.11 has a decimal value of
a. Va
b. %
C. 74

d. none of the above

© 2008 Pearson Education

Quaz

4. The hexadecimal number 2C has a decimal equivalent
value of

a. 14
b. 44
c. 64

d. none of the above

© 2008 Pearson Education

Quaz

5. Assume that a floating point number 1s represented in
binary. If the sign bit 1s 1, the

a. number 1s negative
b. number 1s positive
C. exponent 1s negative

d. exponent 1s positive

© 2008 Pearson Education

Quaz

6. When two positive signed numbers are added, the result
may be larger that the size of the original numbers, creating
overflow. This condition 1s indicated by

a. a change 1n the sign bit
b. a carry out of the sign position
C. a zero result

d. smoke

© 2008 Pearson Education

Quaz

7. The number 1010 in BCD 1s
a. equal to decimal eight
b. equal to decimal ten
c. equal to decimal twelve

d. invald

© 2008 Pearson Education

Quaz

8. An example of an unweighted code 1s
a. binary
b. decimal

c. BCD
d. Gray code

© 2008 Pearson Education

Quaz

9. An example of an alphanumeric code 1s
a. hexadecimal
b. ASCII
c. BCD
d. CRC

© 2008 Pearson Education

Quaz

10. An example of an error detection method for
transmitted data is the

a. parity check

b. CRC
c. both of the above

d. none of the above

© 2008 Pearson Education

Floyd, Digital Fundamentals, 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

35 ZENERDIODES

Floyd, Digital Fundamentals, 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Zener Breakdown

_ The avalanche breakdown occurs

Floyd, Digital Fundamentals, 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

EXAMPLE 3-

Find
Solution

Related Problem Calculate

Floyd, Digital Fundamentals, 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

Floyd, Digital Fundamentals, 10 ed © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

LOGIC GATES

CHAPTER OUTLINE CHAPTER OBJECTIVES

3-1
3-2
3-3
3-4
3-5
3-6
3-1
3-8
3-9

The Inverter
The AND Gate

The OR Gate

The NAND Gate

The NOR Gate

The Exclusive-OR and Exclusive-NOR Gates *
Programmable Logic

Fixed-Function Logic

Troubleshooting

Describe the operation of the inverter, the AND gate, and the
OR gate

Describe the operation of the NAND gate and the NOR gate

Express the operation of NOT, AND, OR, NAND, and NOR
gates with Boolean algebra

Describe the operation of the exclusive-OR and exclusive-

NOR gates

Recognize and use both the distinctive shape logic gate symbols
and the rectangular outline logic gate symbols of ANSI/IEEE
Standard 91-1984

CHAPTER OBJECTIVES KEY TERMS

Construct timing diagrams showing the proper time relationships

of inputs and outputs for the various logic gates
Discuss the basic concepts of programmable logic

Make basic comparisons between the major IC technologies—
CMOS and TTL

Explain how the different series within the CMOS and TTL
families differ from each other

Define propagation delay time, power dissipation, speed-power
product, and fan-out in relation to logic gates

List specific fixed-function integrated circuit devices that

contain the various logic gates
Use each logic gate in simple applications

Troubleshoot logic gates for opens and shorts by using the

oscilloscope

Inverter Fuse

Truth table Antifuse

Timing diagram EPROM

Boolean algebra EEPROM
Complement SRAM

AND gate Target device

Enable JTAG

OR gate CMOS

NAND gate TTL

NOR gate Propagation delay time

Exclusive-OR gate
Exclusive-NOR gate
AND array

Fan-out

Unit load

INTRODUCTION |

The emphasis in this chapter is on the operation,
application, and troubleshooting of logic gates. The
relationship of input and output waveforms of a gate using
timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates are in
accordance with ANSI/IEEE Standard 91-1984. This standard
has been adopted by private industry and the military for
use in internal documentation as well as published literature.

Both programmable logic and fixed-function logic are
discussed in this chapter. Because integrated circuits (ICs) are
used in all applications, the logic function of a device is
generally of greater importance to the technician or
technologist than the details of the component-level circuit
operation within the IC package. Therefore, detailed
coverage of the devices at the component level can be
treated as an optional topic. For those who need it and have
the time, a thorough coverage of digital integrated circuit
technologies is available in Chapter 14, portions of which
may be referenced at appropriate points throughout the
text. Suggestion: Review Section 1-3 before you start this
chapter.

3-1 THE INVERTER

The inverter (NOT circuit) performs the operation called inversion or complementation.
The inverter changes one logic level to the opposite level. In terms of bits, it changes a 1
toa0andaOtoal.

FIGURE 3-1
1
Standard logic symbols for the —>O— — ~——
inverter (ANSI/IEEE Std. 91-1984).
C> [T
(a) Distinctive shape symbols (b) Rectangular outline symbols

with negation indicators with polarity indicators

The Negation and Polarity Indicators

The negation indicator 1s a “bubble” (©) that indicates inversion or complementation when
it appears on the nput or output of any logic element, as shown in Figure 3—1(a) for the in-
verter. Generally, inputs are on the left of a logic symbol and the output is on the right. When
appearing on the input, the bubble means that a 0 is the active or asserted input state, and
the input is called an active-LOW input. When appearing on the output, the bubble means
that a O is the active or asserted output state, and the output is called an active-LOW output.
The absence of a bubble on the input or output means that a 1 is the active or asserted state.
and 1n this case, the input or output is called active-HIGH.

The polarity or level indicator is a “triangle”™ (D) that indicates inversion when it ap-
pears on the input or output of a logic element, as shown in Figure 3—1(b). When appear-
ing on the input, it means that a LOW level is the active or asserted input state. When
appearing on the output, it means that a LOW level is the active or asserted output state.

Either indicator (bubble or triangle) can be used both on distinctive shape symbols and
on rectangular outline symbols. Figure 3—1(a) indicates the principal inverter symbols used
in this text. Note that a change in the placement of the negation or polarity indicator does
not imply a change in the way an inverter operates.

Inverter Truth Table

When a HIGH level is applied to an inverter input, a LOW level will appear on its output.
When a LOW level is applied to its input, a HIGH will appear on its output. This operation
1s summarized in Table 3—1, which shows the output for each possible input in terms of lev-
els and corresponding bits. A table such as this is called a truth table.

Inverter truth table.

INPUT OuUTPUT

LOW (0) HIGH (1)

) HIGH (1) LOW (0)
Inverter Operation y

Figure 3-2 shows the output of an inverter for a pulse input, where ¢, and ¢, indicate the cor-
responding points on the input and output pulse waveforms.

When the input is LOW, the output is HIGH; when the input is HIGH, the output
is LOW, thereby producing an inverted output pulse.

HIGH(1) — - HIGH (1)
LOW (0) -— l > : _I-—-l_ LOW (0)
L 5] h 5]

Input pulse Output pulse

Input |] EIGURE 3-3 A timing diagram shows how two
T " Timing diagram for the case in or more waveforms relate in
Output Figures=7. time.

1 i
fll ;2 Input —Do— Output

1

EXAMPLE 3-1

A waveform is applied to an inverter in IFigure 3—4. Determine the output waveform
corresponding to the input and show the timing diagram. According to the placement
of the bubble, what is the active output state?

l |
0 __ri -t_i; Input —I >0—— Qutput

FIGURE 3-4

=

Logic Expression for an Inverter

In Boolean algebra, which 1s the mathematics of logic circuits and will be covered thor-
oughly in Chapter 4, a vanable is designated by a letter. The complement of a variable 1s
designated by a bar over the letter. A variable can take on a value of either 1 or 0. If a given
variable 1s 1. its complement is O and vice versa.

The operation of an inverter (NOT circuit) can be expressed as follows: If the input vari-
able 1s called A and the output variable is called X, then

X=A

This expression states that the output is the complement of the input, soif A = 0, then X =
I,and if A = 1, then X = (). Figure 3-6 illustrates this. The complemented variable A can

be read as “A bar” or “not A.”

FIGURE 3-6 -
; . A X=A
The inverter complements an input

variable.

Boolean algebra uses variables
and operators to describe a logic

circuit.

An Application

FIGURE 3-7

Binary number
1 ! 0 i 0 0 0 |
0 0 1) l] i 0

1’'s complement

Example of a 1’'s complement circuit
using inverters.

SECTION 3-1
REVIEW
1. When a 1 is on the input of an inverter, what is the output?

2. An active HIGH pulse (HIGH level when asserted, LOW level when not) is required
on an inverter input.

(a) Draw the appropriate logic symbol, using the distinctive shape and the
negation indicator, for the inverter in this application.

(b) Describe the output when a positive-going pulse is applied to the input of an
inverter.

3-2 THE AND GATE

The AND gate is one of the basic gates that can be combined to form any logic function.
An AND gate can have two or more inputs and performs what is known as logical

multiplication.

The term gate is used to describe a circuit that performs a basic logic operation. The
AND gate is composed of two or more inputs and a single output, as indicated by the stan-
dard logic symbols shown 1n Figure 3—8. Inputs are on the left, and the output is on the right
in each symbol. Gates with two inputs are shown; however, an AND gate can have any num-
ber of inputs greater than one. Although examples of both distinctive shape symbols and
rectangular outline symbols are shown, the distinctive shape symbol, shown 1n part (a), 1s

used predominantly in this book.

T
X
B—

(a) Distinctive shape

a—1 &
B—

— X

(b) Rectangular outline with the
AND (&) qualifying symbol

Operation of an AND Gate

An AND gate produces a HIGH output only when all of the inputs are HIGH. When any of
the inputs 1s LOW, the output 1s LOW.

An AND gate can have more
than two inputs.

LOW (0) —

LOW (0) —

HIGH (1) —

5 —
-

LOW (0) —

LOW (0)

LOW (0)

For an AND gate, all HIGH
inputs make a HIGH output.

INPUTS OUTPUT
LOW (0) —— } e ((-_)) A B X
HIGH (1) — 0 0 0
0] 0
1 0 0
HIGH (1) —} HIGH (1) 1 1 1
HIGH (1) ——

1 = HIGH, 0 = LOW

The total number of possible combinations of binary inputs to a gate is determined by
the following formula:

=
i I
A 1 0 1 : | 0 :
i S I e B B S
b b
7 A O 0 , 0 i
' | : : i 1 I
I I ! 'I '; :
I I |
la—f —la—f —pla— —b[-l—t —n-'q—t —
o M R BRI A
| | I | | |
I i I 1 : :
[] o] o ol =
X | ¥) [
| L__ _ 1 = et

—_— e ewel G S BN A R T I e Eay S G A S

e e W SR Tl O W s v Em mas s S G I W BN BN S S .

Logic Expressions for an AND Gate

Boolean multiplication is the same as the AND function.

8(]) » 8 X =AB When variables are shown
1-0 i 0 together like ABC, they are
LT = 1 ANDed.

A — A — T

B — ¢ — b —T

~—
&
—
-
=
]
—
L]

)

0 0 0-0=
0 1 0-1=
1 0 1-0=
i I} 1.1=

Applications

The AND Gate as an Enable/Inhibit Device A common application of the AND gate 1s
to enable (that is, to allow) the passage of a signal (pulse waveform) from one point to an-
other at certain times and to inhibit (prevent) the passage at other times.

I_ ~ilf— l 5 .-_,..l-]

A | |

Enable
I --aa=-||
Register,
Reset to zero : decoder,
between enable pulses. I W, L and
frequency
FIGURE 3-15 display

An AND gate performing an enable/inhibit function for a frequency counter.

pulse repeats at certain intervals and a new updated count 1s made so that if the frequency
changes, the new value will be displayed. Between enable pulses, the counter is reset so that
it starts at zero each time an enable pulse occurs. The current frequency count is stored in
a register so that the display is unaffected by the resetting of the counter.

A Seat Belt Alarm System

HIGH = On Ignition
LOW = Off swiich

HIGH = Unbuckled Seat i P;Lllgize
LOW = Buckled belt C L o it

HIGH activates
alarm.

AO—e®

Timer

Ignition on = HIGH for 30 s

SECTION 3-2
REVIEW

1. When is the output of an AND gate HIGH?
2. When is the output of an AND gate LOW?
3. Describe the truth table for a 5-input AND gate.

3-3 THE OR GATE

The OR gate is another of the basic gates from which all logic functions are
constructed. An OR gate can have two or more inputs and performs what 1s known as
logical addition.

FIGURE 3-17
A A—1 =21
Standard logic symbols for the OR 5 X " — X

gate showing two inputs (ANSI/IEEE

Std. 91-1984). (a) Distinctive shape (b) Rectangular outline with the
OR (= 1) qualifying symbol

An OR gate can have more than
two inputs.

Operation of an OR Gate

An OR gate produces a HIGH on the output when any of the inputs is HIGH. The output 1s
LOW only when all of the inputs are LOW. Therefore, an OR gate determines when one or
more of its inputs are HIGH and produces a HIGH on its output to indicate this condition.

LOW (0) D LOW (0) :Di
LOW () HIGH (1)
LOW (D) HIGH (1)

HIGH (1) HIGH (1)
) HIGH (1) HIGH (1)
LOW (0) HIGH (1)

For an OR gate, at least one
HIGH input makes a HIGH
output.

This truth table can be ex-

OR Gate Truth Table
INPUTS OUTPUT
A B X
0 0 0
0 | 1
1 0 L

ot
—
—_

1 = HIGH, 0 = LOW

panded for any number of inputst, but regardless of the number of inputs. the output 1s HIGH

when one or more of the mputs are HIGH.

Operation with Waveform Inputs 4 1| o

Input A

Input B

—_—— N e N

When either input or both inputs are HIGH.

the outpur is HIGH.

ot — — — —
— e — —
— e m———
o — — —

Output X |

For the 3-input OR gate in Figure 3-22, determine the output waveform in proper time

relation to the inputs.

:

|||||||||| = - —

R e e S

- ||,.
—

= L

Logic Expressions for an OR Gate

The logical OR function of two variables is represented mathematically by a + between the
two variables, for example, A + B.

Addition in Boolean algebra involves variables whose values are either binary 1 or bi-
nary 0. The basic rules for Boolean addition arc as follows:

0+0=0 When variables are separated by
0+1=1

N , they are ORed.

1+1=1

Boolean addition is the same as the OR function.

Notice that Boolean addition differs from binary addition in the case where two 1s are
added. There is no carry in Boolean addition.

%— X=A+B+C +D

Sam>

A A
:sz,q.m B:}_.XZ.HM
B C

(@) (b) (c)

0 0 0+0=0
0 1 0+1=1
1 0 1+0=1
1 1 I+1=1
An Application
Open door/window
SCNSOIs
HIGH = Open
LOW = Closed
HIGH activates
alarm.
m Alarm
-~ circuit

| SECTION 3-3
REVIEW

1. When is the output of an OR gate HIGH?
2. When is the output of an OR gate LOW?
3. Describe the truth table for a 3-input OR gate.

3-4 THE NAND GATI

The NAND gate is a popular logic element because it can be used as a universal gate:
that is, NAND gates can be used in combination to perform the AND, OR, and inverter
operations. The universal property of the NAND gate will be examined thoroughly in
Chapter 5.

After completing this section, you should be able to

= Identify a NAND gate by its distinctive shape symbol or by its rectangular outline
symbol ® Describe the operation of a NAND gate ® Develop the truth table for a
NAND gate with any number of inputs ® Produce a timing diagram for a NAND gate
with any specified input waveforms ® Write the logic expression for a NAND gate with
any number of inputs ® Describe NAND gate operation in terms of its negative-OR
equivalent ® Discuss examples of NAND gate applications

The term NAND is a contraction of NOT-AND and implies an AND function The NAND is the same as the
with a complemented (inverted) output. The standard logic symbol for a 2-input AND except the output is
NAND gate and its equivalency to an AND gate followed by an inverter are shown in inverted.

Figure 3—-25(a), where the symbol = means equivalent to. A rectangular outline sym-
bol is shown in part (b).

.)o—;\ = " X - ey
B — B — B —

(a) Distinctive shape, 2-input NAND gate and its (b) Rectangular outline, 2-input NAND
NOT/AND equivalent gate with polarity indicator

Operation of a NAND Gate

A NAND gate produces a LOW output only when all the inputs are HIGH. When any of
the inputs 1s LOW, the output will be HIGH. For the specific case of a 2-input NAND gate,
as shown in Figure 3—25 with the inputs labeled A and B and the output labeled X, the op-
eration can be stated as follows:

For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH;
X is HIGH when either A or B is LOW, or when both A and B are LOW.

Note that this operation 18 opposite that of the AND in terms of the output level. In a NAND
gate, the LOW level (0) is the active or asserted output level, as indicated by the bubble on
the output. Figure 3—26 illustrates the operation of a 2-input NAND gate for all four input

combinations, and Table 3-7 is the truth table summarizing the logical operation of the 2-
input NAND gate.

LOW (0) —
LOW (0) —

LOW (0) —
HIGH (1) e 21; _} HIGH (1)

LOW (0)

HIGH (1) —} HIGH (1) —

HIGH (1)
LOW (0) — HIGH (1) —

FIGURE 3-26

Operation of a 2-input NAND gate. Open file F03-26 to verify NAND gate operation.

TABLE 3-7
Truth table for a 2-input NAND ;N PUTS OUTPUT
gate.
0 0 1
0] 1
1 0 1
| 1 0

1 = HIGH, 0 = LOW.

Operation with Waveform Inputs

Now let’s look at the pulse waveform operation of a NAND gate. Remember from the truth
table that the only time a LLOW output occurs is when all of the inputs are HIGH.

I EXAMPLE 3-9
If the two waveforms A and B shown in Figure 3-27 are applied to the NAND gate

inputs, determine the resulting output waveform.

EEEET N

|
;

] A) X
: : B — LY

“

Bubble indicates
an active-LOW
output.

s e e

x LI L LI Ll -
M e
A und B are both HIGH during these
four time intervals. Theretore X is LOW.,

FIGURE 3-27

Solution Output waveform X is LOW only during the four time intervals when both input
waveforms A and B are HIGH as shown in the timing diagram.

Related Problem Determine the output waveform and show the timing diagram if input waveform B is
inverted.

l EXAMPLE 3-10
Show the output waveform for the 3-input NAND gate in Figure 3—28 with its proper

time relationship to the inputs.

:
B
i

A P
2—
Cc —

C

x L

FIGURE 3-28

Solution The output waveform X is LOW only when all three input waveforms are HIGH as
shown in the timing diagram.

Related Problem Determine the output waveform and show the timing diagram if input waveform A is
inverted.

Negative-OR Equivalent Operation of a NAND Gate Inherent in a NAND gate’s oper-
ation is the fact that one or more LOW inputs produce a HIGH output. Table 3—7 shows that
output X 1s HIGH (1) when any of the mputs, A and B, is LOW (0). From this viewpoint, a
NAND gate can be used for an OR operation that requires one or more LOW inputs to pro-
duce a HIGH output. This aspect of NAND operation is referred to as negative-OR. The
term negative in this context means that the inputs are defined to be in the active or asserted
state when LOW.

For a 2-input NAND gate performing a negative-OR operation, output X is HIGH
when either input A or input B is LOW, or when both A and B are LOW.

When a NAND gate i1s used to detect one or more LOWSs on its inputs rather than all
HIGHEs, it is performing the negative-OR operation and is represented by the standard logic
symbol shown in Figure 3—29. Although the two symbols in Figure 3-29 represent the same
physical gate, they serve to define its role or mode of operation in a particular application,
as illustrated by Examples 3—11 through 3—13.

__} _ :D— FIGURE 3-29
= Standard symbols representing the

NAND Negative-OR two equivalent operations of a
NAND gate.

P
e

Tank A

HIGH

Level sensor

.

HIGH

) LOW

*&\,_,. J Level sensor

+V

Dy

Green light
indicates both
tanks are
greater than
1/4 tull.

one or both
tanks are less
than 1/4 full.

7

Bubbles indicaie
active-LOW inputs.

For the 4-input NAND gate in Figure 3—32. operating as a negative-OR. determine the

output with respect to the inputs.

Logic Expressions for a NAND Gate

The Boolean expression for the output of a 2-input NAND gate is
X = AB

This expression says that the two input variables. A and B, are first ANDed and then
complemented, as indicated by the bar over the AND expression. This 1s a description
in equation form of the operation of a NAND gate with two inputs. Evaluating this ex-

pression for all possible values of the two input variables, you get the results shown in
Table 3-8.

TABLE 3-8 =
0 0 G0 =0=1
0 1 0-1=0=1
1 0 1-:0=0=1
1 1 I-1=1=0

SECTION 3-4
REVIEW 1. When is the output of 2 NAND gate LOW?

2. When is the output of a NAND gate HIGH?

3. Describe the functional differences between a NAND gate and a negative-OR
gate. Do they both have the same truth table?

4. Write the output expression for a NAND gate with inputs A, B, and C.

3-5 THE NOR GATE

The NOR gate, like the NAND gate, is a useful logic element because it can also be
used as a universal gate; that 1s, NOR gates can be used 1n combination to perform the
AND, OR, and inverter operations. The universal property of the NOR gate will be
examined thoroughly in Chapter 5.

A A o >l
B B B

(a) Distinctive shape. 2-input NOR gate and its NOT/OR (b) Rectangular outline. 2-input
equivalent NOR gate with polarity indicator
FIGURE 3-33

Standard NOR gate logic symbols (ANSI/IEEE Std. 91-1984).

For a 2-input NOR gate, output X is LOW when either input A or input B is HIGH,
or when both A and B are HIGH; X is HIGH only when both A and B are LOW.

LOW (0) LOW (0) .'
HIGH (1) LOW (0)
LOW (O HIGH (1)
HIGH (1) HIGH (1)
LOW (0) LOW (0)
L.OW (0) HIGH (1)

FIGURE 3-34

Operation of a 2-input NOR gate. Open file F03-34 to verify NOR gate operation.

INPUTS OUTPUT Lo L
A B X Truth table for a 2-input NOR gate.
0 0 1
0 1 0
I 0 0
1 1 0

1 = HIGH, 0 = LOW.

[f the two waveforms shown in Figure 3-35 are applied to a NOR gate, what 1s the
resulting output waveform?

]
*] I A
i L B A
| &] l
B o I
B I
| | l {] !
| | | 1 I | |
| | [| | |
| l [| I |
I i I | I |
]
X I -

Show the output waveform for the 3-input NOR gate in Figure 3-36 with the proper
time relation to the inputs.

o
—_————t
r

ey
l
v

=

!
]
T

|

S
A

Negative-AND Egquivalent Operation of the NOR Gate

For a 2-input NOR gate performing a negative-AND operation, output X is HIGH

only when both inputs A and B are LOW.

NOR

ey

Negative-AND

< FIGURE 3-37

Standard symbols representing the
two equivalent operations of a NOR
gate.

A device 1s needed to indicate when two LOW levels occur simultaneously on its
inputs and to produce a HIGH output as an indication. Specify the device.

A 2-input NOR gate operating as a negative-AND gate 1s required to produce a HIGH
output when both inputs are LOW., as shown in Figure 3-38.

FIGURE 3-38

LOW —3J
} HIGH
LOW —O

I EXAMPLE 3-17

As part of an aircraft’s functional monitoring system, a circuit is required to indicate
the status of the landing gears prior to landing. A green LED display turns on if all
three gears are properly extended when the “gear down” switch has been activated in
preparation for landing. A red LED display turns on if any of the gears fail to extend
properly prior to landing. When a landing gear is extended, its sensor produces a LOW
voltage. When a landing gear 1s retracted. its sensor produces a HIGH voltage.
Implement a circuit to meet this requirement.

+V
Landing gear sensors
Extended = LOW
Retracted = HIGH

L 4

Red LED
N Gear retracted

o ——

Green LED
¥ Al gear extended

When driving a load such as an LED with a logic gate, consult the manufacturer’s data
sheet for maximum drive capabilities (output current). A regular IC logic gate may not be
capable of handling the current required by certain loads such as some LEDs. Logic gates
with a buffered output, such as an open-collector (OC) or open-drain (OD) output, are
available in many types of IC logic gate configurations. The output current capability of
typical IC logic gates is limited to the pA or relatively low mA range. For example, stan-

dard TTL can handle output currents up to 16 mA. Most LEDs require currents in the range
of about 10 mA to 50 mA.

I EXAMPLE 3-18

For the 4-input NOR gate operating as a negative-AND in Figure 340, determine the
output relative to the inputs.

A_
| I
— I
B ! A O
I i B O X
— | C —O
C ! D
j
| |
|
D I
I
!
|
|

Logic Expressions for a NOR Gate

The Boolean expression for the output of a 2-input NOR gate can be written as

X=A+EHB

This equation says that the two input variables are first ORed and then complemented, as
indicated by the bar over the OR expression. Evaluating this expression, you get the results
shown in Table 3—10. The NOR expression can be extended to more than two input vari-
ables by including additional letters to represent the other variables.

TABLE 3-10

=
S
]
=
gt
|

0 O
2
o=

I

—i)
|
= Boe

o
+
)

pe S
. v
b
g
L | | o
i
2o

—_—

b,

+

[y

|
I

I SECTION 3-5
REVIEW

1. When is the output of a NOR gate HIGH?
2. When is the output of a NOR gate LOW?

3. Describe the functional difference between a NOR gate and a negative-AND gate.
Do they both have the same truth table?

4. Write the output expression for a 3-input NOR with input variables A, B, and C.

3-6 THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

Exclusive-OR and exclusive-NOR gates are formed by a combination of other gates
already discussed, as you will see in Chapter 5. However, because of their fundamental
importance in many applications, these gates are often treated as basic logic elements

with their own unique symbols.

The Exclusive-OR Gate

Standard symbols for an exclusive-OR (XOR for short) gate are shown in Figure 3—41. The
XOR gate has only two inputs.

A ———% A | =1
L —

(a) Distinctive shape (b) Rectangular outline with the XOR

For an exclusive-OR gate,
opposite inputs make the output

HIGH

LOW (0) — LOW (0) A\Di
LW _}D— LOW (0) A —— HIGH (1)
HIGH (1) — HIGH (1) —\D_
BN _/D— HIGH () HIGH (1) —— LOW (0)

TABLE 3-11

INPUTS OUTPUT
X

Truth table for an exclusive-OR gate.

I EXAMPLE 3-19

A certain system contains two 1dentical circuits operating in parallel. As long as both
are operating properly, the outputs of both circuits are always the same. If one of the
circuits fails, the outputs will be at opposite levels at some time. Devise a way to
detect that a failure has occurred in one of the circuits.

D HIGH (ndicates failure)

Sl HIGH
CircuitA |

Circuit B LU

The Exclusive-NOR Gate

Standard symbols for an exclusive-NOR (XNOR) gate are shown in Figure 3—44. Like the
XOR gate, an XNOR has only two inputs. The bubble on the output of the XNOR symbol
indicates that its output is opposite that of the XOR gate. When the two input logic levels
are opposite. the output of the exclusive-NOR gate is LOW. The operation can be stated as
follows (A and B are inputs, X is the output):

For an exclusive-NOR gate, output X is LOW when input A is LOW and input B
is HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both

HIGH or both LOW,

t
=2

A — A .
BﬂD_X B .

(a) Distinctive shape (b) Rectangular outline

LOW (0) _\Di e LOW (0) — N
LOw (©) —4 EAERGL) e)i Yo—— LOW (0)

HIGH (1) _\DW HIGH (1) —\DO—
LOW (0 HIGH (1
LOW (0) — w HIGH (1) —J' SR

TABLE 3-12

Truth table for an exclusive-NOR ,:NPUTS OULPUT
gote.

0 0 1

0 1 0

1 0 0

1 1

A l 0 0 |
e I —
l I | | I A —
I I | I 1 D X
I I i | I B —
: I I
B 1, 1 o, 0 ,
— I i }
I I I I I
i | I I I
i I i I I
I 1 I I I
I I I I I
I i I I I
LT L
| I) I I
I | I 1 |
I)
I
|
1

I EXAMPLE 3-20

Determine the output waveforms for the XOR gate and for the XNOR gate, given the
input waveforms, A and B, in Figure 3-47.

T A
I I |] T
, I
B | i : |i H
| —
! I I i
: I | I I '
: | | I | |
XOR
— -

'

XNOR

An Application

An exclusive-OR gate can be used as a two-bit adder. Recall from Chapter 2 that the basic
rules for binary addition are as follows: 0 + 0=0,0+1=1,1+0=1,and 1 + 1 = 10.
An examination of the truth table for an XOR gate will show you that its output is the binary
sum of the two input bits. In the case where the inputs are both 1s, the output is the sum 0,
but you lose the carry of 1. In Chapter 6 you will see how XOR gates are combined to make
complete adding circuits. Figure 3-48 illustrates an XOR gate used as a basic adder.

FIGURE 3-48

Input bits Output (sum)

An XOR gate used to add two bits.

A

1 | O (without 1 carry)

| SECTION 3-6
REVIEW

1. When is the output of an XOR gate HIGH?
2. When is the output of an XNOR gate HIGH?
3. How can you use an XOR gate to detect when two bits are different?

3-7 PROGRAMMABLE LOGIC

Programmable logic was introduced in Chapter 1. In this section, the basic concept of
the programmable AND array, which forms the basis for most programmable logic. is
discussed, and the major process technologies are covered. A programmable logic
device (PLD) is one that does not initially have a fixed-logic function but that can be
programmed to implement just about any logic design. As you have learned, two types
of PLLD are the SPLLD and CPLD. In addition to the PLD, the other major category of
programimable logic is the FPGA. For simplicity, all of these devices will be referred to

as PLDs. Also, some important concepts in programming are discussed.

Basic Concept of the AND Array

Most types of PLDs use some form of AND array. Basically, this array consists of AND gates
and a matrix of interconnections with programmable links at each cross point, as shown in
Figure 3—49(a). The purpose of the programmable links is to either make or break a connec-
tion between a row line and a column line in the interconnection matrix. For each mput to an
AND gate, only one programmable link is left intact in order to connect the desired variable to
the gate mput. Figure 3-49(b) 1llustrates an array after it has been programmed.

Programmable link

B B B B
I e * = e [
“E]
@ @ e .
©) ¢ ® ®
o @ & o> @
® 3 @ &)—)& & X.=AB
® &] el -
L $. ® L ®
@ o e @ o
® L 3 [3 ® }/\ ? D—X. =AB
& o @ ~@ @

(2) Unprogrammed (b) Programmed

I EXAMPLE 3-21

Show the AND asray in Figure 3—49(a) programmed for the following outputs:
X\, =AB.X; = Ab.and X; = AB

See Figure 3-50.

DUL

Programmable Link Process Technologies

Several different process technologies are used for programmable links in PLDs.

Fuse Technology This was the original programmable link technology. It is still used
in some SPLDs. The fuse is a metal link that connects a row and a column in the inter-
connection matrix. Before programming, there is a fused connection at each intersec-
tion. To program a device, the selected fuses are opened by passing a current through
them sufficient to “blow” the fuse and break the connection. The intact fuses remain and
provide a connection between the rows and columns. The fuse link is illustrated in
Figure 3-51. Programmable logic devices that use fuse technology are one-time pro-
grammable (OTP).

B B =

(a) Fuse intact before (b) Programming (c) Fuse open after
programming current programming

Antifuse Technology An antifuse programmable link 1s the opposite of a fuse link. Instead
of breaking the connection, a connection is made during programming. An antifuse starts out
as an open circuit whereas the fuse starts out as a short circuit. Before programming, there
are no connections between the rows and columns 1n the interconnection matrix. An antifuse
is basically two conductors separated by an insulator. To program a device with antifuse tech-
nology, a programmer tool applies a sufficient voltage across selected antifuses to break
down the insulation between the two conductive materials, causing the insulator to become
a low-resistance link. The antifuse link 1s illustrated in Figure 3—52. An antifuse device is
also a one-time programmable (OTP) device.

Contacts

(a) Antifuse is open before (b) Programming voltage (c) Antifuse is effectively
programming breaks down insulation shorted after programming
layer to create contact.

EPROM Technology In certain programmable logic devices, the programmable links are
stmilar to the memory cells in EPROMs (electrically programmable read-only memories).
This type of PLD 1s programmed uvsing a special tool known as a device programmer. The
device is inserted mnto the programmer, which is connected to a computer running the pro-
gramming software. Most EPROM-based PLDs are one-time programmable (OTP). How-
ever, those with windowed packages can be erased with UV (ultraviolet) light and
reprogrammed using a standard PLLD programming fixture. EPROM process technology
uses a special type of MOS transistor, known as a floating-gate transistor, as the program-
mable link. The floating-gate device utilizes a process called Fowler-Nordheim tunneling
to place electrons in the floating-gate structure.

In a programmable AND array, the floating-gate transistor acts as a switch to connect the
row line to either a HIGH or a LOW, depending on the input variable. For input variables
that are not used, the transistor is programmed to be permanently off (open). Figure 3-53
shows one AND gate in a simple array. Variable A controls the state of the transistor in the
first column, and variable B controls the transistor in the third column. When a transistor is
off. like an open switch, the input line to the AND gate is at +V (HIGH). When a transistor
1s on, like a closed switch, the input line is connected to ground (LOW). When variable A or
B is 0 (LOW), the transistor is on, keeping the input line to the AND gate LOW. When A or
B is | (HIGH), the transistor is off, keeping the input line to the AND gate HIGH.

Transistor turned on or off Transistor permanently
bv state of input A programmed off
1 %i A B B Fé
oV ANt . . o %
g -t) - } . i
1% 4 - .
1 0 (@) }‘ L _j‘ E_}
+V —AMy e 2 ' .
) L
8] € — €)

| | AT
! | !
[l ! [
Transistor turned on or off
bv state of input B

SRAM Technology Many FPGAs and some CPLDs use a process technology similar
to that used in SRAMs (static random-access memories). The basic concept of SRAM-
based programmable logic arrays is illustrated in Figure 3-54(a). A SRAM-type mem-
ory cell 1s used to turn a transistor on or off to connect or disconnect rows and columns.
For example, when the memory cell contains a 1 (green), the transistor is on and con-
nects the associated row and column lines, as shown in part (b). When the memory cell
contains a O (blue), the transistor is off so there is no connection between the lines, as
shown 1n part (c).

SRAM technology is different from the other process technologies discussed because it
1s a volatile technology. This means that a SRAM cell does not retain data when power is
turned off. The programming data must be loaded into a memory: and when power 1s turned
on, the data from the memory reprograms the SRAM-based PLD.

The fuse, antifuse, EPROM, and EEPROM process technologies are nonvolatile, so they
retain their programming when the power is off. A fuse is permanently open, an antifuse is
permanently closed, and floating-gate transistors used in EPROM and EEPROM-based ar-
rays can retain their on or off state indefinitely.

(b) Transistor o

A B B
SRAM SRAM SRAM SRAM
cell cell cell cell
.) L " /J . /J L S N)
P \v' /asa T ,5&
e (‘J 2) 2
. ‘» 9 »
SRAM SRAM SRAM SRAM
cell cell cell cell :
- = = X
)
.«’“x”‘i;w;i) i v‘*fi;‘_-f.) v“f“;-v-;fj T
"o ‘® ‘& ‘e
I I
| |
| |
(a) SRAM-based programmable array
SRAM SRAM
cell 1 cell
P J \ ® ‘E%J .\O
b P
* e Xl-

(¢) Transistor off

il

FIGURE 3-54

Basic concept of an AND array with
SRAM technology.

Device Programming

The general concept of programming was introduced in Chapter 1. and you have seen how
interconnections can be made in a simple array by opening or closing the programmable
links. SPLDs, CPLDs, and FPGAs are programmed in essentially the same way. The de-
vices with OTP (one-time programmable) process technologies (fuse, antifuse, or EPROM)
must be programmed with a special hardware fixture called a programmer. The program-
mer 1s connected to a computer by a standard interface cable, as shown 1n Figore 3-353. De-
velopment software is installed on the computer, and the device is inserted into the
programmer socket. Most programmers have adapters, such as the one shown, that allow
different types of packages to be plugged in.

Computer
running PLD
development
software

FOrAFIoaDinae o &

Programmer

In-System Programming (ISP)

” ?‘ PLD development board

System PCB

Sy e e
. Pa
v
i

JTAG-compliant PLD

= JTAG hardware
JTAG g inside the PLD

interface

FIGURE 3-58

Simplified illustration of in-system programming via a JTAG interface.

— FIANFL) | b I | € JIN | JE 74\

Two major digital integrated circuit (IC) technologies that are used to implement logic
gates are CMOS and TTL. The logic operations of NOT, AND, OR, NAND, NOR, and
exclusive-OR are the same regardless of the IC technology used: that is, an AND gate
has the same logic function whether it is implemented with CMOS or TTL.

CMOS stands for Complementary Metal-Oxide Semiconductor and is implemented with a
type of field-effect transistor. TTL stands for Transistor-Transistor Logic and is implemented
with bipolar junction transistors. Keep in mind that CMOS and TTL. differ only in the type of
circuit components and values of parameters and not in the basic logic operation. A CMOS
AND gate has the same logic operation as a TTL AND gate. This is true for all the other basic
logic functions. The difference in CMOS and TTL is 1n performance characteristics such as
switching speed (propagation delay), power dissipation, noise immunity. and other parameters.

CMOS

There is little disagreement about which circuit technology, CMOS or TTL, is the most
widely used. It appears that CMOS has become the dominant technology and may eventually
replace TTL in small- and medium-scale ICs. Although TTL dominated for many years
mainly because it had faster switching speeds and a greater selection of device types, CMOS
always had the advantage of much lower power dissipation although that parameter is fre-
quency dependent. The switching speeds of CMOS have been greatly improved and are now
competitive with TTL, while low power dissipation and other desirable factors have been re-
tained as the technology has progressed.

CMOS Series The categories of CMOS in terms of the dc supply voltage are the S V
CMOS, the 3.3 V CMOS, the 2.5 V CMOS, and the 1.8 V CMOS. The lower-voltage
CMOS families are a more recent development and are the result of an effort to reduce
the power dissipation. Since power dissipation 1s proportional to the square of the volt-
age, a reduction from 5 V to 3.3 V, for example. cuts the power by 34% with other fac-
tors remaining the same.

Within each supply voltage category, several series of CMOS logic gates are available.
These series within the CMOS family differ in their performance characteristics and are
designated by the prefix 74 or 54 followed by a letter or letters that indicate the series and
then a number that indicates the type of logic device. The prefix 74 indicates commercial
grade for general use, and the prefix 54 indicates military grade for more severe environ-
ments. We will refer only to the 74-prefixed devices 1n this textbook. The basic CMOS se-
rics for the 5 'V category and thetr designations include

74HC and 74HCT—High-speed CMOS (the “I” indicates TTL compatibility)
T4AC and 74ACT—Advanced CMOS
T4AHC and 74 AHCT—Advanced High-speed CMOS

The basic CMOS series for the 3.3 V category and their designations include

74LV—Low-voltage CMOS
741L.VC—Low-voltage CMOS
74ALVC—Advanced Low-voltage CMOS

In addition to the 74 series there 1s a 4000 series, which 1s an older, low-speed CMOS
technology that is still available, although in limited use. In addition to the “puare” CMOS,
there is a series that combines both CMOS and TTL called BiCMOS. The basic BiCMOS
series and their designations are as follows:

TABCT—Bi1CMOS
74ABT—Advanced BiCMOS
74L.VT—Low-voltage BICMOS

74ALB—Advanced Low-voltage BiICMOS

TTL

TTL has been a popular digital IC technology for many years. One advantage of TTL is that
it is not sensitive to electrostatic discharge as CMOS is and, therefore. 1s more practical in
most laboratory experimentation and prototyping because you do not have to worry about
handling precautions.

I'TL Series Like CMOS. several series of TTL logic gates are available, all which op-
erate from a 5 V dc supply. These series within the TTL family differ in their perform-
ance characteristics and are designated by the prefix 74 or 54 followed by a letter or
letters that indicate the series and a number that indicates the type of logic device within
the series. A TTL IC can be distinguished from CMOS by the letters that follow the 74
or 54 prefix.

The basic TTL series and their designations are as follows:

74—standard TTL (no letter)

74S—Schottky TTL

74 AS—Advanced Schottky TTT.
741.S—Low-power Schottky TTL
74ALS—Advanced Low-power Schottky TTL
74F—Fast TTL

Types of Fixed-Function Logic Gates

All of the basic logic operations, NOT, AND, OR, NAND, NOR, exclusive-OR (XOR), and
exclusive-NOR (XNOR) are available in both CMOS and TTL. In addition to these,
buffered output gates are also available for driving loads that require high currents. The
types of gate configurations typically available in IC packages are identified by the last two
or three digits in the series designation. For example, 741.S04 1s a low-power Schottky hex
inverter package. Some of the common logic gate configurations and their standard identi-
fier digits are as follows:

Quad 2-input NAND—00 Dual 4-input NAND—20
Quad 2-input NOR—902 Dual 2-input AND—21
Hex inverter—04 Triple 3-input NOR—27
Quad 2-input AND—08 Single 8-input NAND—30)
Triple 3-input NAND—10 Quad 2-input OR—32
Triple 3-input AND—11 Quad XOR-—86

Quad XNOR—266

IC Packages All of the 74 series CMOS are pin-compatible with the same types of de-
vices in TTL. This means that a CMOS digital IC such as the 74HCO0O (quad 2-input
NAND), which contains four 2-input NAND gates in one IC package, has the identical
package pin numbers for each input and output as does the corresponding TTL device. Typ-
1cal IC gate packages. the dual in-line package (DIP) for plug-in or feedthrough mounting
and the small-outline integrated circuit (SOIC) package for surface mounting, are shown in
Figure 3-60. In some cases, other types of packages are also available. The SOIC package
1s significantly smaller than the DIP. The pin configuration diagrams for most of the fixed-

function logic devices listed above are shown in Figure 3—61.

<— (.740 - 0.770 in.

=

Pin no.1 ’
identifiers Mﬁ ‘I lﬁi |_ : J

0.145 - 0.200 in.

0.250+ 0.010 in.

0.125-0.150 in.

0.014 - 0.023 in. T\’P—*[L ‘ \
0.100 £ 0.010 in. TYP |

(a} 14-pin dual in-line package (DIP) for feedthrough mounting

<—0.335-0.334 in. —»
14 13 12 11 10 9 8

0.228 — 0.244 in.

Lead no.l /

identifier

0.053 — 0.069 1n. [L[[L—EI’_ T [|] 1 I | 1 ”

i) iy a8

0050 in, TYP 0.014-0.020in, TYP

(b) 14-pin small outline package (SOIC) for surface mounting

VCC

VCC

VCC

VCC

ElN==

[14] [13] [12] [11] [0 [9] []
L l2][3][4][s]Le][7]

D

5[1e][7]

bl I

Dp S A

[14] [13] {12] [11] [16] [9] [8]
[i][2]13]14

L] L
B ST

[14] [13] [12] [11] [10] [9] &]
L l2][3][+]1s][e][7]

D

ENEESE
D) [0

[12] [73] [72] [77] [19] (9] [¥]
(21 B4 6]]

D

GND

‘08

GND

'04

GND

‘02

GND

00

VCC

VC(’

VCC

VCC

el

| L]

[14] [13] [12] 1] [10] [9] [8] [1a] [13] [12] [11] [i0] [9] [8]

[72] [13] [12] [77] [70] [3] [¥]

e

[14] [13] [12] [11] [10] [9} [8 |

Lf2][3]14]ls]16] 7]

Lo

L 2]3]14[s]{e]]7]

2] 3] 4] [5](6][7]

L2345]s]17]

GND

21

GND

20

GND

11

GND

‘10

VCC

Vee

VCC

Vee

[ta] [13] [12] [i1] [10] [9] [8]

L 2] 3]1a][5]6][7]

[1a] [13] [12] [11] [10] [9[8]

MQJILI&IILIIQEI

4] [13] [12] [11] [10] [9] [8]

GBI S Tel 1]

[t4] [13] [12] [11] [10] [9] [8|

T |

Lf2) 3] [al{s][6]]7]

GND

GND

GND

GND

‘86

'32

'30

27

Single-Gate Logic A limited selection of CMOS gates is available in single-gate pack-
ages. With one gate to a package, this series comes in tiny 5-pin packages that are intended
for use in last-minute modifications for squeezing logic into tight spots where available
space is limited.

Logic Symbols The logic symbols for fixed-function integrated circuits use the standard
gate symbols and show the namber of gates in the IC package and the associated pin num-
bers for each gate as well as the pin numbers for Vi and ground. An example is shown 1n
Figure 3-62 for a hex inverter and for a quad 2-input NAND gate. Both the distinctive shape
and the rectangular outline formats are shown. Regardless of the logic family, all devices
with the same suffix are pin-compatible; in other words, they will have the same arrange-
ment of pin numbers. For example. the 7400, 74S00. 74LS00, 74ALS00, 74F00, 74HCO00,
and 74AHCOO0 are all pin-compatible quad 2-input NAND gate packages.

Vee

| a9

(1) :::>K3)
(3) :::>O (4
(5) :::>C}__ (6)
(9) :::>x3 (8)
(1) :::>G (10)
(12)

(13) ::jxa

|)
GND

Distinctive shape logic diagram

(a) Hex inverter

0 A N
3) L@
5) _©
©) . ®

(11) ()

(13) | 342

Rectangular outline logic symbol
with polarity indicators. The inverter
qualifying symbol (1) appears in the
top block and applies to all blocks
below.

Vee
| (14)
1
(N 3)
(2)
4
(4) ©)
(3)
9
) (®)
(10)
(13)
|
GND

(b) Quad 2-input NAND

2

“

&)
®)
(10)
(12)
(13)

Performance Characteristics and Parameters

Several things define the performance of a logic circuit. These performance characteristics
are the switching speed measured in terms of the propagation delay time, the power dissi-
pation, the fan-out or drive capability, the speed-power product, the dc supply voltage, and
the input/output logic levels.

Propagation Delay Time This parameter 1s a result of the limitation on switching
speed or frequency at which a logic circuit can operate. The terms low speed and high
speed, apphied to logic circuits, refer to the propagation delay time. The shorter the prop-
agation delay, the higher the speed of the circuit and the higher the frequency at which it
can operate.

Propagation delay time, ., of a logic gate is the time interval between the application
of an input pulse and the occurrence of the resulting output pulse. There are two different

measurements of propagation delay time associated with a logic gate that apply to all the
types of basic gates:

tpy - The time between a specified reference point on the input pulse and a corre-
sponding reference point on the resulting output pulse, with the output changing
from the HIGH level to the LOW level (HL).

tpr - The time between a specified reference point on the input pulse and a corre-
sponding reference point on the resulting output pulse, with the output changing
from the LOW level to the HIGH level (ILH).

Show the propagation delay times of the inverter in Figure 3—63(a).

Input Y 50% &
| |
N i\
1 1
l |
i l
H T \ I f___
L\ L
Output I §50% R .
| n | N
| Y | i
Input 4I>O; Output L : :) ' :
<" re)

(a) (b)

For standard-series TTL gates, the typical propagation delay is 11 ns and for F-series
gates 1t 1s 3.3 ns. For HCT-series CMOS, the propagation delay is 7 ns, for the AC series it
1s 5 ns, and for the ALVC series it is 3 ns. All specified values are dependent on certain op-
erating conditions as stated on a data sheet.

DC Supply Voltage (V.-) The typical dc supply voltage for CMOS is either 5V, 3.3V,
2.5V, or 1.8V, depending on the category. An advantage of CMOS is that the supply volt-
ages can vary over a wider range than for TTL. The 5 V CMOS can tolerate supply varia-
tions from 2 V to 6 V and still operate properly although propagation delay time and power
dissipation are significantly affected. The 3.3 V CMOS can operate with supply voltages
from 2 V to 3.6 V. The typical dc supply voltage for TTL is 5.0 V with a minimum of 4.5V
and a maximum of 5.5 V.

Power Dissipation The power dissipation, Pp, of a logic gate 1s the product of the dc sup-
ply voltage and the average supply current. Normally. the supply current when the gate out-
put is LOW is greater than when the gate output is HIGH. The manufacturer’s data sheet
usually designates the supply current for the LOW output state as /¢, and for the HIGH state
as I-cy. The average supply current is determined based on a 50% duty cycle (output LOW
half the time and HIGH half the time), so the average power dissipation of a logic gate 1s

Iecu + IeaL
2

Pp = Vcc(

CMOS series gates have very low power dissipations compared to the TTL series. How-
ever, the power dissipation of CMOS is dependent on the frequency of operation. At zero
frequency the quiescent power is typically in the microwatt/gate range, and at the maximum
operating frequency it can be in the low milliwatt range: therefore, power is sometimes
specified at a given frequency. The HC series, for example, has a power of 2.75 puW/gate at
0 Hz (quiescent) and 600 uW/gate at 1 MHz.

Power dissipation for TTL is independent of frequency. For example, the ALS series
uses 1.4 mW/gate regardless of the frequency and the F series uses 6 mW/gate.

Input and Output Logic Levels V;_1s the LOW level input voltage for a logic gate. and
Vin 1S the HIGH level input voltage. The 5 V CMOS accepts a maximum voltage of 1.5V
as V;,_and a minimum voltage of 3.5V as Vj;,. TTL accepts a maximum voltage of 0.8 V as
Vi and a minimum voltage of 2 V as V.

Vo 1s the LOW level output voltage and Vi is the HIGH level output voltage. For 5V
CMOS, the maximum Vg is 0.33 V and the minimum Vg is 4.4 V. For TTL, the maximum
Vor, 18 0.4 V and the minimum Vg, 1s 2.4 V. All values depend on operating conditions as
specified on the data sheet.

Speed-Power Product (SPP) This parameter (speed-power product) can be used as a
measure of the performance of a logic circuit taking into account the propagation delay time
and the power dissipation. It is especially useful tor comparing the various logic gate series
within the CMOS or TTL family or for comparing a CMOS gate to a TTL gate.

The SPP of a logic circuit is the product of the propagation delay time and the power dis-
sipation and is expressed in joules (J), which is the unit of energy. The formula is

SPP = t,P,

Fan-Out and Loading The fan-out of a logic gate is the maximum number of inputs of the
same series in an IC family that can be connected to a gate’s output and still maintain the out-
put voltage levels within specified limits. Fan-out is a significant parameter only for TTL be-
cause of the type of circuit technology. Since very high impedances are associated with CMOS
circuits, the fan-out is very high but depends on frequency because of capacitive effects.

A certain gate has a propagation delay of 5 ns and /ooy = | mA and Iy = 2.5 mA
with a dc supply voltage of 5 V. Determine the speed-power product.

I + 1] mA + 2.5 mA
Vcc(CCH CCL) _ s V(

Pp) = 5V(1.75mA) = 875 mW

2 2
SPP = (5ns)(8.75mW) = 43.75pJ

Fan-out is specified in terms of unit loads. A unit load for a logic gate equals one input
to a like circuit. For example, a unit load for a 74LS00 NAND gate equals one input to an-
other logic gate in the 74LS series (not necessarily a NAND gate). Because the current from
a LOW input (/;;) of a 74L.S00 gate 1s 0.4 mA and the current that a LOW output (I) can
accept is 8.0 mA, the number of unit loads that a 74L.S(00 gate can drive in the LOW state
18

lop 80mA

Unit loads = — = —
I, 04mA

20

Figure 3—64 shows LS logic gates driving a number of other gates of the same circuit tech-
nology, where the number of gates depends on the particular circuit technology. For example.
as you have seen, the maximum number of gate inputs (unit loads) that a 74LS series TTL gate
can drive 1s 20.

FIGURE 3-64

The LS TTL NAND gate output fans
out to a maximum of 20 LS TTL gate

Driving gate

—

L oad gate

inputs.

|
T

 BOOLEANALGEBRAAND

LOGIC SIMPLIFICATION
CHAPTEROUTLINE

4-1 Boolean Operations and Expressions
4-2 Laws and Rules of Boolean Algebra
4-3 DeMorgan's Theorems
4-4 Boolean Analysis of Logic Circuits
4-5 Simplification Using Boolean Algebra
4-6 Standard Forms of Boolean Expressions
4-7 Boolean Expressions and Truth Tables
4-8 The Karnaugh Map
4-9 Karnaugh Map SOP Minimization
4-10 Karnaugh Map POS Minimization
4-11 Five-Variable Karnaugh Maps
4-12 VHDL (optional)

Digital System Application

| ntroduction

= 1854, George Boole paper:“An Investigation of the Laws of Thought”
Founded the Mathematical rules of Logic and probabilities.

= Was formulated a convenient and systematic way of expressing and
analyzing of logic circuits. "logical algebra” (Boolean algebra),

* (Claude Shannon Was the first to apply Boole's work to the analysis and
design of logic circuits. In 1938,

* Shannon wrote a thesis at MIT titled “A Symbolic Analysis of Relay and
Switching Circuits™

In this chapter:

* The laws and theorems of Boolean algebra and Their application to digital

= Define a circuit with a Boolean expression and evaluate its operation

= How to simplify logic circuits (Boolean algebra and Karnaugh maps)

= VHDL for programming logic devices 1s introduced.

Chapter Objectives

Apply the basic laws and rules of Boolean algebra

Apply DeMorgan's theorems to Boolean expressions

Describe gate networks with Boolean expressions

Evaluate Boolean expressions

Simplify expressions by using the laws and rules of Boolean algebra
Convert any Boolean expression into a sum-of-products (SOP) form
Convert any Boolean expression into a product of-sums (POS) form
Use a Karnaugh map to simplify Boolean expressions

Use a Karnaugh map to simplify truth table functions

Utilize "don't care" conditions to simplify logic functions

Write a VHDL program for simple logic

Apply Boolean algebra, the Karnaugh map method, and VHDL

to a system application

4-1 BOOLEAN OPERATIONSAND EXPRESSIONS

Variable: is a symbol (usually an italic uppercase letter) used to

represent a logical quantity that can be 1 or a 0.

Complement: is the inverse of a variable and is indicate by a bar

over the variable (overbar).

Literal: is a variable or the complement of a variable.

Boolean Addition

The OR gate 1s a Boolean Adder. 0+0=0 0+1=1 1+0=1 I1+1=1

vijvijvipv]

Boolean addition 1s equivalent to the OR operation, In Boolean
algebra, a sum term 1s a sum of literals. In logic circuits, a sum term
1s produced by an OR operation with no AND operations involved.

A+BA+BA+B+CandA+ B+ C+D.

A sum term=1 when one or more of the literals in the term are 1.
A sum term=0 only if each of the literals 1s 0.

EXAMPLE 4-1

Determine the values of A, B, C, and D that make the sum term A +
B + C + D equal to 0.

Solution

For the sum term to be 0, each of the literals in the term must be 0.
Therefore, A=0,B=0soB=1,C=0,and D=0soD=1.

A+B+C+D=0+4+140+1=0+0+0+0=0

Related Problem Determine the values of A and B that make the
sum term A + B equal to 0.

Boolean Multiplication

The AND gate 1s a Boolean multiplier. 0-0=0

010100

In Boolean algebra, a product term 1s the product of literals.
In logic circuits, a product term is produced by an AND operation
without OR operations involved.

AB, AB, ABC, and AB CD.

A product term=1 only if each of the literals in the term 1s 1.
A product term=0 when one or more of the literals are 0.

EXAMPLE 4-2

Determine the values of A, B, C, and D that make the product term
ABCD equal to 1.

Solution

For the product term to be 1, each of the literals in term must be 1.

ABCD =1-0-1-0=1-1-1-1 =1

Related Proble_m Determine the values of A and B that make the
product term AB equal to 1.

SECTION 4-1 REVIEW

1. If A= 0, what does A equal?

2. Determine the values of A, B, and C that make the sum term
A+ B+ C equal to 0.

3. Determine the values of A, B, and C that make the product term
ABC equal to 1.

4-2 LAWSAND RULES OF BOOLEAN ALGEBRA

Commutative Law of addition

Commutative Law of multiplication

A ———

B......._._._.._.....

A+B=B+A

e — B+A
B A

A.B=B.A

]

A—

Associative L aws

Associative Law of addition A+(B+C)=(A+B)+C
A A
A1+ (B+ () ’ A+ B
— B
; =
B+C _ A+B)+C
C C

Associative Law of multiplication A.(B.C)=(A.B).C

A A
— B —
p = _
. C

Distributive Laws

Distributive of multiplication with respect to addition and factoring

B B —
B+C
AB+C)=AB+A.C C:D | =
A __)—X - AC

X=AB+0) X=AB + AC

AB

Distributive of addition with respect to multiplication

A+ (B.O)=(A+B).(A+ ()

J92 1z 50 5 e S8 (Joeme p o a8 pl (LS (sLLaS DB a5 0is o
sl i

Rules of Boolean Algebra

Basic rules that are useful in manipulating and simplifying Boolean
expressions.

lpd SO A FAL A=A
2A+1=1 S A-A=0

3.A-0=0 9.4 = A

4441 =4 10.A+AB=A
5A+A=A 11.A+AB=A+B

6.A+ A=1 2.(A+ B)YA+C)=A+ BC

A, B, or C can represent a single vanable or a combination of variables.

AL QW8 il 5 Sdae Gy jlad g ()l s) ol LLLead g ac) 8 () 4a

Rules of Boolean Algebra

A=A+U=A
A=0— A=] —
X=0 X=1
L b=
X=A+|=4A

Rules of Boolean Algebra

X=A4+A=A
A=0 A=1
i ¥ _ X=1
A=1 A=0
X=A+A=1
X=0 X1
A=0"—— A=1
X=AsA=A
= Jo— A=0—
iy X=0 A X=0
A=0—""1 = e
X=A*41=0

;‘i:A

Rules of Boolean Algebra

Rule 10. A+AB=A

A+AB=A1+A.B Rule4:A. 1=A
=A.(1+B) factoring (distributive)
=A.l Rule 2: (I+B)=1
=A
0 0 0 0 }FDi
0 1 0 0 <
1 0 0 1 l
1 1 l l & straight connection
1 equal T

Rules of Boolean Algebra
Rule 1. A+AB=A+B
A+AB=(A+AB)+AB
=(AA +AB) + AB
=AA +AB +AA +AB

=(A+A)A+B)

- L(A+B)=A+B Gl @ rd 4 S oz G0y @9) ool L

Rules of Boolean Algebra

Rule 12. (A+B)A+C)=A+BC < _ra4 duugea 6 b a)sd

(A+B)A+C)=AA+AC+AB+BC
=A+AC+AB+BC
=A(1+C)+AB +BC
=A.1+AB+BC

=A(1 +B)+ BC
=A.1+BC=A+BC

RN R SR SO AT
B_
0 0 0 0 0 0 0 0
o | o 1 0 I 0 0 0 :Dj}
0 1 0 1 0 0 0 0 C
0 1 1 i 1 1 1 1
1 0 0 1 1] 0]
1 0] 1)] 0 i A
] I 0 1 1 1 0 it B—]
1 it] 1 1 1 1 | C—
t {

equal

BE R e e e e
PR R P e e

bbb

L

4-3 DEMORGAN'STHEOREMS

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important
part of Boolean algebra. In practical terms. DeMorgan's theorems provide mathematical

verification of the equivalency of the NAND and negative-OR gates and the equivalency of
the NOR and negative-AND gates.

E/ —)_(+ ? inputs | Output
X — — X _— 0 0
} XY = D X+Y 0 1
i Y 1 0
1 1
NAND Negative-OR
X+Y=XY

inputs | Output

e
St
.|..
I

O
XY
Yy —

NOR Negative-AND

Can be used for more than two variable

EXAMPLE 4-5

1) a+BC+DE+F)

2) AB+CD + EF

EXAMPLE 4-6

(a) (A+B)+C=

(b) (A + B) + CD =

(©) (A+B)CD+E+F=

EXAMPLE 4-7

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a
starting point, use DeMorgan's theorems and any other rules or laws that are
applicable to develop an expression for the exclusive-NOR gate.

AB + AB = (AB)(AB) = (A + B)(A + B) = (A + B)(A + B)

(A+ B)(A+B)=AA+ AB + AB + BB = AB + AB

The final expression for the XNOR is AB + AB. Note that this expression
equals 1 any time both variables are Os or both variables are 1s.

e

(c) A+ B+ C+ DE

(b) (A + B)C

(a) ABC + (D + E)

4-4 BOOLEANANALYSISOF LOGIC CIRCUITS

Boolean algebra provides a concise way to express the operation of a
logic circuit formed by a combination of logic gates so that the output

can be determined for various combinations of input values.

Boolean Expression for a Logic Circuit

Begin at the left-most inputs and work toward the final output, writing the
expression for each gate.

C‘—_

7—_-4\
>
D

Constructing a Truth Tablefor a Logic Circuit

I esults in - INPUTS - OuUTPUT
(e s diteie et tor P D)

determined, a truth table that shows 0
1) list the sixteen input variable

oS tBEn ARG Yriablessan Deidexe]

WHluate the Boolean expressio
) place a 1 1n the output column for

vadhesotabitietimpot vapiablesiables
that was determined 1in the
evaluation.

3) Finally, place a 0 in the output
column for all other combinations of
input variables.

(_‘ ——
1 CD
ID)——=1
D— B+CD
B
4 —

>

B c D
0 0 0
0 0 1
0 | 0
0] 1
| 0 0
[0]
|] 0
1 1 1
0 0 0
0 0 1
0] 0
0 1 1
1 0 0
1 0 1
1] 0
] i 1

P P P P PO O O O O O O O o o

SECTION 4-4 REVIEW QUESTIONS

1. Replace the AND gates with OR gates and the OR gate with an
AND gate in Figure 4-16 and determine the Boolean
expression for the output.

2. Construct a truth table for the circuit in Question 1.

—
L

()
D -_/ -$nl .‘-

4-5 SIMPLIFICATION USING BOOLEAN ALGEBRA

4) oo Jole wimay (LSe (2o r LSe Sleasgys sl 4 &S gl g0 2
Dy Jdlem ((g9lums

Hlae a5 ooyl Al alll feS jolic slass a2 Jolas jlae g0 4o o

sl s, U

il g8 3 slls U

sl el o ol e U

g oS Ll 1 0 5 g eS poee D

4-5 SIMPLIFICATION USING BOOLEAN ALGEBRA

Many times in the application of Boolean algebra, you have to reduce
a particular expression to its simplest form or change its form to a
more convenient one to implement the expression most efficiently.
The approach taken 1n this section is to use the basic laws, rules, and
theorems of Boolean algebra to manipulate and simplify an
expression. This method depends on a thorough knowledge of
Boolean algebra and considerable practice in its application, not to
mention a little ingenuity and cleverness.

At the first we try to using Demorgan’s theorems and distribution and
any other needed rules to convert Boolean expressions to the form

that only include variables or literals

EXAMPLE 4-8

Using Boolean algebra techniques, simplify this expression:

AB+AB+C)+ BB+ ()
Solution
AB+AB +AC+ BB+ BC distributive
AB+AB+AC+ B+ BC BB=B
AB+AC+ B+ BC AB+AB=AB
AB+AC+B (B+BC=B)
B+ AC AB+B=B

D@—AB +AB+ 1+ BB +0) > :D B+AC
i) -
@ | - - o

— L HCH WO circuils are

Related Problem Simplify the Boolean expression:

AB + A(B + C) + B(B + ().

EXAMPLE 4-9

Simplify the following Boolean expression:

[AB(C + BD) + AB]|C
Solution
1) (ABC + ABBD + AB)C 5) ABCC + ABC
2) (ABC + A-0-D + AB)C 6) ABC + ABC
3) (ABC + 0 + AB)C 7) BC(A + A)
4) (ABC + AB)C 8) BC-1 = BC

Related Problem Simplify the Boolean expression

[AB(C + BD) + AB]|CD.

EXAMPLE 4-10

Simplify the following Boolean expression:

ABC + ABC + ABC + ABC + ABC

Solution

BC(A + A) + ABC + ABC + ABC
BC-1 + AB(C + C) + ABC
BC + AB-1 + ABC

BC + AB + ABC
BC + B(A + AC)
BC + B(A + C)
BC + AB + BC

Related Problem Simplify the Boolean expression

ABC + ABC + ABC + ABC.

EXAMPLE 4-11

Simplify the following Boolean expression:

AB + AC + ABC

Solution

(AB)(AC) + ABC

(A + B)(A + C) + ABC

AA +AC+ AB + BC + ABC
A+AC+ AB + BC

A+ AB + BC

A+ BC

Related Problem Simplify the Boolean expression

AB + AC + ABC.

SECTION 4-5 REVIEW QUESTIONS

1. Simplify the following Boolean expressions if possible:

(a) A+ AB +ABC (b) (A+B)C+ABC (c) ABC(BD + CDE) + AC

2. Implement each expression in Question 1 as originally stated
with the appropriate logic gates. Then implement the

simplified expression, and compare the number of gates.

4-6 STANDARD FORMS OF BOOLEAN EXPRESSIONS

All Boolean expressions, regardless of their form, can be converted
into either of two standard forms: the sum-of-products form or the
product-of-sums form. Standardization makes the evaluation,
simplification, and implementation of Boolean expressions much more
systematic and easier.

Sum-Of-Products (SOP).

A product term was defined as a term consisting of the product of
literals (variables or their complements). When two or more product
terms are summed by Boolean addition. the resulting expression 1s a
sum-of-products (SOP).

A+ BCD

AB + ABC
ABC + CDE + BCD
AB + ABC + AC

Domain of a Boolean Expression

The domain of a general Boolean expression 1s the set of variables
contained 1n the expression 1n either complemented or
uncomplemented form.

The domain of AB + ABC 1s the set of variables A, B, C and the
domain of the expression ABC + CDE + BCD is the set of variables A,
B,C, D, E.

AND/OR Implementation of an SOP Expression

Simplification of any Boolean expressions can results an SOP
expression.

Any SOP expression can be implemented by two level AND-OR logic.

B —3
J2
air - ¥ i N e R s 7

NAND/NAND Implementation of an SOP Expression

For converting any AND-OR implementation to NAND-NAND we
need only replace any AND-OR gates with NAND gates. Also we can
replace any NOT gate with a two input NAND gate that its inputs tied

together.

X = AB + BCD + AC

-y e SN

s TN

EXAMPLE 4-12

Convert each of the following Boolean expressions to SOP form.

(a) AB+B(CD+EF) ((b)(A+B)(B+C+D) (¢c)(A+B)+C

SOLUTION

(2) AB + B(CD + EF) = AB + BCD + BEF
(b) (A+B)B +C+D)=AB+AC +AD + BB + BC + BD

©)(A+B)+C=(A+B)C=(A+B)C=AC +BC

Related Problem Convert ABC + (A + B)(B + C + AB) to SOP form.

The Standard SOP Form (CANONIC)

A standard SOP expression 1s one in which all the variables in the
domain appear in each product term in the expression. This product
term called minterm.

Standard SOP expressions are important in constructing truth tables,
and 1n the Karnaugh map simplification method.

Converting Product Terms to Standard SOP

Step 1. Multiply each nonstandard product term by a term made up of
the sum of a missing variable and its complement. This results in two
product terms. As you know, you can multiply anything by I without
changing its value.

Step 2. Repeat Step 1 until all resulting product terms contain all
variables in the domain in either complemented or uncomplemented
form.

EXAMPLE 4-13

Convert the following Boolean expression into standard SOP form:

X =ABC + AB + ABCD
SOLUTION
The domain of this SOP expression 1s A, B, C, D.

ABC = ABC(D + D) = ABCD + ABCD
AB =AB(C+C)(D+ D) = ABCD + ABCD + ABCD + ABCD

At the end:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Related Problem Convert the following expression to standard SOP
form.

WXY + XYZ + WXY

Binary Representation of a Standard Product Term

A standard product term i1s equal to 1 for only one combination of
variable values.

— —

ABCD = 1-0-1-0=1-1-1-1 =1
In this case, minterm has a binary value of 1010 (decimal ten).

An SOP expression 1s equal to 1 only i1f one or more of the minterms
in the expression 1s equal to 1.

EXAMPLE 4-14

Determine the binary values for which the following standard SOP
expression 1s equal to 1:

— ——

ABCD + ABCD + ABCD

SOLUTION

The expression equals 1 when any or all of the three product terms 1s 1.
respective minterm values are 15, 9, 0

Related Problem Determine the binary values for which the following
SOP expression 1s equal to 1. Is this a standard SOP expression?

XYZ + XYZ + XYZ + XYZ + XYZ

The Product-of-Sums (POS) Form

A sum term was defined in Section 4-1 as a term consisting of the sum
(Boolean addition) of literals (variables or their complements). When
two or more sum terms are multiplied, the resulting expression is a
product-of-sums (POS).

(A+B){(A+ B+ C)

(A+ B+ CYC+ D+ E)B+ C+ D)
(A+B)(A+ B+ C)(A+ Q)

A(A+ B+ C)B+ C+ D)

Implementation of a POS Expression: Implementing a POS
expression simply requires ANDing the outputs of two or more OR gates.

i

X=(A+BWB+C+MA+O)

sl

The Standard POS Form

A standard POS expression 1s one in which all the variables in the
domain appear in each sum term in the expression. Each sum terms in
a standard POS expression 1s called a M axterm.

Non standard: (A + B + C)(A + B+ D)(A + B+ C + D)

Standard: (A+B+C+D)A+B+C+D)A+B+C+ D)

Convertinga Sum Term to Standard POS:

Step 1. Add to each nonstandard product term a term made up of the
product of the missing variable and its complement. This results in two
sum terms.

Step 2. Apply rule 12 distribution: A+ BC = (A + B)(A+ C)

Step 3. Repeat Step 1 until all resulting sum terms contain all variables in
the domain in either complemented or uncomplemented form.

EXAMPLE 4-15

Convert the following Boolean expression into standard POS form:
(A+ B+ C)B+C+ D)A+B+ C+ D)
SOLUTION
A+B+C=A+B+C+DD=(A+B+C+D)A+B+CH+ D)
B+C+D=B+C+D+AA=(A+B+C+D)A+B+C+ D)

(A+B+C)(B+C+D)A+B+C+ D)=
(A+B+C+D)A+B+C+D){A+B+C+D)A+B+C+D)A+B+C+D)

Related Problem Determine the standard POS expressions for:
(A + B)(B + ()

Binary Representation of a Standard Sum Term (M axter m)

A standard sum term 1s equal to O tor only one combination of variable
values, and 1s 1 for all other combinations of values for the variables.

A+B+C+D=0+1+0+1=0+0+0+0=0

EXAMPLE 4-16

Determine the binary values of the variables for which the following
standard POS expression 1s equal to O:

(A+B+C+D){A+B+C+D)A+B+C+ D)
SOLUTION

A+B+C+D=0+0+0+0=0
A+B+C+D=0+1+140=0+0+0+0=0
A+B+C+D=14+14+14+1=0+0+0+0=0

The POS expression equals 0 when any of the sum terms equals 0. Maxterm
values that make the output to 0 are 0, 6, 15.

Related Problem Determine the binary values for which the following POS
expression 1s equal to 0. Is this a standard POS expression?

X+Y+2D)X+Y+2D)X+Y+2DX+Y+2)(X+ Y+ Z)

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP
expression are not present in the equivalent standard POS expression.
Therefore, to convert from standard SOP to standard POS, the
following steps are taken:

Step 1. Evaluate each product term in the SOP expression. That is,
determine the binary numbers that represent the product terms.

Step 2. Determine all of the binary numbers not included in the
evaluation in Step I.

Step 3. Write the equivalent sum term for each binary number from
Step 2 and express in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4-17

Convert the following SOP expression to an equivalent POS

expression: -)
ABC + ABC + ABC + ABC + ABC

SOLUTION

The evaluation 1s as follows: 000+ 010+ 011 + 101 + 111

Since there are three variables in the domain of this expression. there
are a total of 8 possible combinations. The SOP expression contains
five of these combinations, so the POS must contain the other three
which are 001,100, and 110.

Remember, these are the binary values that make the sum term O. The
equivalent POS expression is:

(A+B+C)A+B+C)A+B+ ()

Related Problem Verify that the SOP and POS expressions in this
example are equivalent by substituting binary values into each.

SECTION 4-6 REVIEW

1. Identify each of the following expressions as SOP, standard
SOP, POS, or standard POS:

(a) AB + ABD + ACD (b) (A+B+C)A+B+C)
(c) ABC + ABC (d) A(A + C)(A + B)

2. Convert each SOP expression in Question 1 to standard form.

3. Convert each POS expression in Question 1 to standard form.

4-7 BOOLEAN EXPRESSIONSAND TRUTH TABLES

All standard Boolean expressions can be easily converted into truth
table format using binary values for each term (minterms or
Maxterms) in the expression. The truth table 1s a common way of
presenting, in a concise format, the logical operation of a circuit.

Also. standard SOP or POS expressions can be determined from a
truth table.

Converting SOP Expressions to Truth Table Format

1- Constructing a truth table and list all possible combinations of binary
values of the variables in the expression.

2- Convert the SOP expression to standard form if 1t is not already.
3- Place a 1 in the output column (X) for each binary value that

makes the standard SOP expression a 1 and place a 0 for all the remaining
binary values.

EXAMPLE 4-18
Develop a truth table for the standard SOP expression

ABC + ABC + ABC.

SOLUTION
Minterms that make 1 Al B & X ~ PRODUCT TERM
in out put are TN —— 0 B

0 0 1 I ABC
001,100,111 (ml, m4, i, .
m?7) 0o 1 i 0

1 0 0 | ABC

i 0 1 0

1 1 0 0

| 1] | ABC

Related Problem Create a truth table for the standard SOP
expression R —
ABC + ABC.

Converting POS Expressions to Truth Table Format

Recall that a POS expression 1s equal to 0 only if at least one of the
sum terms (Maxterms) 1s equal to O.

1- List all the possible combinations of binary values of the variables
just as was done for the POS expression.

2- Convert the POS expression to standard form if 1t is not already.

3- Place a 0 in the output column (X) for each binary value that makes
the expression a 0 and place a 1 for all the remaining binary values.

EXAMPLE 4-19

Determine the truth table for the following standard POS expression:

(A+B+C)A+B+C)A+B+C)YA+B+ C)A+ B+ C)

SOLUTION

INPUTS OuTPUT
Maxterms that make O N X . SUM TERM

c
in output are 000, o 0 0 0)
010, 011, 101, 110 N . ! M
0 1 0 0 A+B+C
(MOM2,M3,M5,M6) ; 1 1 : —_—
1 0 0 1
1 0 1 0 (A + B+ C)
1 1 0 0 (A+ B+ C)
1 1 1 1

Related Problem Develop a truth table for the following standard

POS expression: (A+B+C)A+B+C)A+B+ C)

Determining Standard Expressions from a Truth Table

SOP:

1- List the binary values of the input variables that make output=1.

2- Convert each binary value to the corresponding product term by
replacing each 1 with the corresponding variable and each 0 with the
corresponding variable complement.

3- Use OR operation for combining previous steps minterms.

POS:

1- List the binary values of the input variables that make output=0.

2- Convert each binary value to the corresponding sum term by
replacing each 0 with the corresponding variable and each 1 with the
corresponding variable complement.

3- Use AND operation for combining previous steps Maxterms.

EXAMPLE 4-20
From the truth table, determine the standard SOP expression and the

equivalent standard POS expression.
INPUTS OUTPUT
A B _ x

C
0
]
0
I
0
1
0
1

SOLUTION 0
miterms that make 1 0
in output are: 0
011 —> ABC ?
100 —> ABC 1
110 —> ABC 1

1

0
0
1
1
0
0
|
[11 —> ABC |

So SOP expression Is:

X = ABC + ABC + ABC + ABC

EXAMPLE 4-19
Maxterms that make 0
in output are: ¢ .

C
0
]
0
I
0
1
0
1

QUTPUT
0
000 — A+ B+ C 0
001l —> A+ B+ C ?
0
i
|

10l — A+ B+ C

0 0
0 0
0 1
0 1
1 0
1 0
I 1
1 I

So POS expression is:

X=A+B+C)A+B+C)YA+ B+ C)A+B+C)

SECTION 4-7 REVIEW

1. If a certain Boolean expression has a domain of five variables,
how many binary values will be 1n its truth table?

2. In a certain truth table, the output 1s a 1 for the binary value
0110. Convert this binary value to the corresponding product
term using variables W, X, Y, and Z.

3. In a certain truth table, the output 1s a 0 for the binary value
1100. Convert this binary value to the corresponding sum term

using variables W, X, Y, and Z.

4-8 THE KARNAUGH MAP

] OIS u." 6‘)‘*3 S = 6}L‘*’ ool
L Cenl Sad ool &le Lolwl Ll oS Cancs jausess bB adgl & le g9, 51 ™

).:}
el o]y jased a4, g Olee (hge A gilw col @
> boogd o 5 oolw dlols & le Ll aS caS Canlad U olgs od jud gl o @

L (SwslS S (18s5 b, 9_35)5 Jouz pdai Sooleuaw slepdg, blie o
M Sy 1y Ghgy ol)8 aSSl (5,8 L g it azlse 399 O] Sz

Aoy diplyz (LS (S wae b 2oz 4 leis oy
Al a5 gews Soilelnn (N9, S Glaie @ 65,85 Jou by, b Lo bl yo

AW M‘P L.NT ol solail JJL‘&).».:.a.o I\ L: @Lm)b.o L§‘)"

THE KARNAUGH MAP

Another representation of truth table.

Instead of organizing into columns and rows , the Karnaugh map
1s an array of cells in which each cell represents a binary value of
the mput variables. (midterm or maxterm value)

The cells are arranged 1n a way that the position of 1 or 0 1n map
inform us how to combine the minterms or maxterms for
simplifing expressions.

The number of cells in a Karnaugh map 1s equal to the total
number of possible input variable combinations as is the number of

rows 1n a truth table.

THE KARNAUGH MAP

C
3 variables AB
00
Row & column numbering 1s in gray
code so any horizontal or vertical ol
adjacent cell differs only in one v
parameter.
Any cell can uniquely related to a =
minterm or maxterm .
cD
ARN. 00 ol 11 10
00 f{ O 1 3 2
: or| 4
4 variables T L
(112 |13 |15 | 14
0] 8 9 | 11| 10

(a)

C

| AB 0

1 00

3 01

7 11 ‘

5 10 &

(b)

CD

AB 00 0l 11 10
00 [ABCO|ARCD|ABCDIABCH
01 BCIMARCINABCDIABCID
11 |ABCO|ABCH|ABCDIABCD
10 |ABCD{ABCD|ABCD|ABCH

(b}

CELL ADJUCANCY

el ple g gl (e 0duel Holome Ayl gl v b paite SO jo g5 &S Jsh g0y
sl anils S ie gl K Jblas 45 ol 90,0 O

=3 b @Y Sl Bl pole U

o5 G2 yly b gt G o o bl yolie U

CD o
AB 00 % 701 A\ /11 \ /10 N
\00 o ' i/

e —
k" 1
o

SECTION 4-8 REVIEW

1. In a 3-variable Karnaugh map, what is the binary value for the
cell in each of the following locations:
(a) upper left corner (b) lower right corner
(c) lower left corner (d) upper right corner

2. What 1s the standard product term for each cell in Question 1 for
variables X, Y, and Z?

3. Repeat Question 1 for a 4-variable map.

4. Repeat Question 2 for a 4-variable map using variables W, X, Y,
and Z.

4-9 KARNAUGH MAP SOP MINIMIZATION

SOP (g5l ool gl 63,15 Jgoz 50 52 Sjle 3l sl

co2,9) (oo 50 SOP o lasliwl o8 1) (g & jle -)

e Al ady o (oo H18 1)) sae Loy b Bl Sledsh o abgy e 95,15 g 50 Y
e 5l)5 4 (g3l Jg s+ 835

s aad S olie Sy e et sk o)l il Ygars sz Sibe Jnl oy
w3 oo GRIBH Lo Cepw g 931 Jaoa 4 (05 Joazr 5l Lot

G

T S 000 001 110 100
AB oof 1 1< , ' |
A_ B o {
AB n| 1-4—+ ——

AB | 1 — L

EXAMPLE 4-21

Map the following standard SOP expression on a Karnaugh map:

ABC + ABC + ABC + ABC

solution: c C
001 ABC iB
010 ABC i
110 ABC A B
111 ABC AB
AB

Related Problem: Map the standard SOP expression ABC + AB C
+ ABC on a Karnaugh map.

EXAMPLE 4-22

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

solution:

0011 ABCD cb ¢cD CD cD
0100 ABCD AB

1101 ABCD _

1111 ABCD AB

1100 ABCD AbB

0001 ABCD AB

1010 ABCD

Related Problem: Map the standard SOP expression ABCD + ABCD +
ABCD + ABCD on a Karnaugh map.

Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a
Karnaugh map.

ALGEBRAIC METHOD
A+ABC = _

C C
=A(C + C)(B+B) + ABC= iB
= ACB + ACB+ ACB + ACB + ABC ~
AB 1
AB 1 1
NUMERICAL EXPANSION A BC _
L AB 1 1
1 00 ABC
1 01 ABC
1 10 ABC

1 11 ABC

EXAMPLE 4-23

Map the following nonstandard SOP expression on a Karnaugh map:
A + AB + ABC.
solution:

A + AB + ABC
000 100 110
001 101

010

011

Related Problem: Map the SOP expression BC + AC on a Karnaugh
map.

EXAMPLE 4-24

Map the following nonstandard SOP expression on a Karnaugh map:
BC+AC + ABC + ABCD + ABCD + ABCD
solution:

cD
BC AB + ABC + ABCD + ABCD + ABcD A\ Y 10

or 1l
0000 1000 1100 1010 0001 1011 o .-‘.-
0001 1001 1101

1000 1010 .

1001 1011

0l

10

Related Problem: Map the SOP expression A + CD + ACD + ABCD
on a Karnaugh map.

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible
terms with the fewest possible variables is called minimization.

After an SOP expression has been mapped, a minimum SOP expression is
obtained by grouping the Is and determining the minimum SOP expression

from the map.

1. A group must contain either 1, 2, 4, 8, or 16 cells

2. Each cell in a group must be adjacent to one or more cells in that same
group.

3. Always include the largest possible number of 1’s in a group in

accordance with rule 1.

4. Each 1 on the map must be included in at least one group. The 1’s

already in a group can be included in another group as long as the

overlapping groups include noncommon 1’s.

EXAMPLE 4-25

Group the 1’s in each of the below Karnaugh maps.

solution:

C
AB

0

00

0l

11

10

(a)

&

AB

00

0l

11

10

(b)

Qe

[

CD
AB 00 01 11 10
00 ‘ | 1
0l ‘] l/ 1 l)
11
10 L1 1)

(c)

EXAMPLE 4-25

Group the 1’s in each of the below Karnaugh maps.

solution: D

C
g\ /00 o1 11 10
00| 1 [
0! ﬁ 1
11 Ll 1
10} 1 (1 \I>

(d)

pe L

Related Problem: Determine if there are other ways to group the 1’s in
Figure 4-30 to obtain a minimum number of maximum groupings.

Deter mining the Minimum SOP Expression from the Map

1. Group the cells that have 1°s. Each group of cells containing 1°s creates
one product term composed of all comone and unchanged variables.

2. Determine the minimum product term for each group.

3. When all the minimum product terms are derived from the Karnaugh

map, they are summed to form the minimum SOP expression.

EXAMPLE 4-26

Determine the product terms for the Karnaugh map in Figure 4-31
and write the resulting minimum SOP expression.

solution: CD
AN 00 01 11 10
00 (1 =
i gpns 0l (l] 1]\'
B+ AC + ACD -
Z

11 kl 1 | 1/

10

i
b4

Related Problem: For the Karnaugh map in Figure 4-31, add a 1 in the
lower right cell (1010) and detennine the resulting SOP expression.

EXAMPLE 4-27

Detelmine the product telms for each of the Karnaugh maps in Figure
4-32 and write the resulting minimum SOP expression.

solution: (b) B+ AC + AC (d) D + ABC + BC
\BC B B !
C / ;/ C / cD CD /
AB 1 AB AR\ 007 01 1110 AN\ 007 01 1110
oo IR Hl

=
@ p
CP-
| |-
=
)
-)

[AC o (1)| D 01 (

Nl

11 QQ L1 /I\ 11 11 Ll 1 1
o Y\ ol D o |G D o] NG B

- } - AT ! .
(a) AB + BC + ABC (¢c) AB+ AC + ABD

Related Problem: For the Kamaugh map in Figure 4-32(d), add al in
the 0111 cell and determine the resulting SOP expression.

EXAMPLE 4-28

Use a Kamaugh map to minimize the following standard SOP

expression: ABC + ABC + ABC + ABC + ABC
solution:

_ _ L L L AR ¢ . 4 1
ABC + ABC + ABC + ABC + ABC - b /:)
101 011 001 000 100 _

= \
11
10 (1 I]

B+ AC

Related Problem: Use a Karnaugh map to simplify the following
standard SOP expression:

XYZAXYZ+XYZ+XYZ+XYZ+XYZ

EXAMPLE 4-29

Use a Kamaugh map to minimize the following standard SOP
expression:

BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
solution:

Related Problem: Use a Karnaugh map to simplify the following
standard SOP expression:

WXYZ+WXYZ+WXYZ+WXYZ+WYZ

Mapping Directly from a Truth Table

X =ABC + ABC + ABC + ABC

Inputs | Output AB
ABC X 00

01

11

%

OI©

bt O8O3 OO

Don’t Care Condition

Sometimes a situation arises in which some input variable combinations are
not allowed. (ie BCD). Since these un allowed states will never occur in an
application involving the BCD code, they can be treated as "don't care"
terms with respect to their effect on the output. That is, for these "don't
care" terms either a 1 or a 0 may be assigned to the output.

The "don't care" terms can be used to advantage on the Karnaugh map. for
For each "don't care" term, an X is placed in the cell. When grouping the
1’s, the X’s can be treated as 1’s to make a larger grouping or as 0’s if they
cannot be used to advantage.

The larger a group, the simpler the resulting term will be.

Don’t Care Condition

ABCD 00 Ol 1n 10 Inputs | Output
- | ABCD| Y

0000 0
N\ = 0001 0

01 ————= ABCI
@_I_ B oo 0010 0
0011 0

nlfx | x iix)l x
(N/ W 0100 0
0101 0
o (D] x | ©) R,
= > o111| 1
: 1000 1
1001 1
1010 X
"don't cares' are not used as 1°s: i(l)(l)(l) i
Don’t cares

AB C+ ABCD 1 101 X
1110 X
"don't cares'" are used as 1°’s: 1111 X

A + BCD. Simpler expression
(a) Truth table

SECTION 4-9 REVIEW

1. Layout Karnaugh maps for three and four variables.

2. Group the 1’s and write the simplified SOP expression for the
Karnaugh map in Figure 4-25.

3. Write the original standard SOP expressions for each of the

Karnaugh maps in Figure 4-32.

CD

AB 09 1 # AB 0 1 ¥ AB , ABN 00 01 1110

00 @ ; 00 [1 oo |(1 1) 00| 1 [
L e

ol ot (R R o1 b 1 I 1) ' o | (1 1 I
N / (

& i
oo/ : U

(‘/ ")

X \
X 1 1] (1 >
10 , 10 (10 () 10 _ \ \1

(@) (b) (c) e)

4-9 KARNAUGH MAPPOSMINIMIZATION

POS 5l ool sl 655 Jgo 10 0 O jle 23l sl
co29) o0 ;0 POS o lasbinl o0 1) (6 &l -

o2 (0,18 1y vae leeyinSle b Sbline sldgls jo abgye 9315 Jgazr jo Y
s L] ioles 40 g5Ls Jg o) @Blg o e 4l 4

i
A B 0] '3 2l § A+ O T U+~ D T L i el b
000 010 110 101
oy o T .'
| :
11 F 3

EXAMPLE 4-30

Map the following standard POS expression on a Karnaugh map:

(A+B+C+D{A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)

solution:
(A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)
1100 1011 0010 1111 0011
CcD
AB 00 0] i 10

\

00 0 | 0<d—AasB+CsD

01

11 =—A+B+C+D

105!"

Related Problem: Map the following standard POS expression on a
Karnaugh map:

(A+B+C+D)YA+B+C+D)A+B+C+D)YA+B+ C+ D)

Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression 1s basically the same
as for an SOP expression except that you group 0’s to produce
minimum sum terms instead of grouping 1’s to produce minimum
product terms. The rules for grouping the 0’s are the same as those

for grouping the 1°s.

EXAMPLE 4-31

Use a Karnaugh map to minimize the following standard POS
expression:

(A+B+C)(A+B+C){A+B+C)(A+B+C)A+ B+ ()

solution: C
AN

Maxterms: 000, 001, 010, 011, 110 =

01

A(B + C)

1 | 1

Minterms: 111, 101, 100

AC + AB = A(B + C)

10

Related Problem: Use a Karnaugh map to simplify the following
standard POS expression:

X+Y+2)(X+Y+2)(X+Y+Z2)(X+7Y+2Z)

EXAMPLE 4-32

Use a Karnaugh map to minimize the following POS expression:

(B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)

solution: - A+ R

AB 701\ 01 11 10 /,
Maxterms: 0000, 1000, 0010, 1001, 0 @
1000, 1100 ot || o

11 || 0 [p—odqF LB~ C+D

@D

(C+DYA+B+D)Y(A+B+ O

Related Problem: Use a Karnaugh map to simplify the following POS
expression:

(WHX+Y+Z)(WHX+Y+ZD(WH+HX+ Y+ Z)(W+ X+ 2Z)

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression 1s mapped, it can easily be converted to the
equivalent SOP form directly from the Karnaugh map. Also, given a
mapped SOP expression, an equivalent POS expression can be
derived directly from the map. This provides a good way to compare
both minimum forms of an expression to determine if one of them
can be implemented with fewer gates than the other.

For a POS expression, all the cells that do not contain 0’s contain 1°s,
from which the SOP expression 1s derived. Likewise, for an SOP
expression, all the cells that do not contain 1’s contain 0’s, from

which the POS expression 1s derived.

EXAMPLE 4-33

Using a Karnaugh map, convert the following standard POS expression
into a minimum POS expression, a standard SOP expression, and a

minimum SOP expression.

(A+B+C+D)A+B+C+D)A+B+C+D)
(A+B+C+D)A+B+C+ D)(A+B+ C+D)

solution:

1 B 4 7&1 CD ._ I ¥ i’
CD
00 01 11 10 / AB 00 - OI 11 10
AB] | _'/ A 3#(FYy
F J

00 w EE 00 |10 0 0 | .-
0| m oLl o 17| 1w ABCD
il w " . - oo’ il o | 1 | 1= aBcD
10 m wl 1 /o I 1 1<f— ABCD

\ AbC 1) \B () \sCDH ABCD

(b) Standard SOP: oy 2 .
Alelz + AB(_?D + Al_iCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD

(a) Minimum POS: A+ B+ OB+ C+D)YB+ C+ D)

EXAMPLE 4-33

CD
AgN\ . 00 01 117 10
ol J o 16] o
01| 0 (1 R)
<)
0 1|01
e IS
10 |[1 0 I 1
m R]

(¢c) Mimimum SOP: AC + BC + BD + BCD

Related Problem: Use a Karnaugh map to convert the following
expression to minimum SOP form:

(WHX+Y+ZD)W+X+Y+D(W+X+Y+Z2)(W+ X+ 2Z)

SECTION 4-10 REVIEW

1. What is the difference in mapping a POS expression and an SOP
expression?

2. What 1s the standard sum term expressed with variables A, B, C,
and D for a 0 in cell 1011 of the Kamaugh map?

3. What i1s the standard product term expressed with variables A,

B, C, and D for a 1 1n cell 0010 of the Karnaugh map?

4— ! = B - 4 y | Y § . =k B 80 I~ " 4 A R
l 1 = 4 .z Y7 i g B r B L ESd TESE W& %W = = IRA VY| -

Boolean functions with five variables can be simplified using a 32-cell Karnaugh map.
Actually, two 4-variable maps (16 cells each) are used to construct a 5-variable map. You
already know the cell adjacencies within each of the 4-variable maps and how to form groups
of cells containing 1s to simplify an SOP expression. All you need to leam for five variables
is the cell adjacencies between the two 4-variable maps and how to group those adjacent 1s.

< 1110 o o 1 10 DE
N2 BC pO_00 01 11 10
00 00 00 :
\.
ol ol ol A | "
A20
i 1 17 [1
10 10 o] 1 | 1 1
A=0 A=1
— DE ‘
The term for the yellow group is DE. e\ O O R 1
The term for the orange group is BCE. el]
The term for the light red group is ABD. ol 1 1 i
The term for the gray cell grouped with the red cell is BC DE, . ‘] ¥
Combining these terms into the simplified SOP expression yields
10, 1 1

X = DE + BCE + ABD + BCDE

I EXAMPLE 4-34

Use a Karnaugh map to minimize the following standard SOP 5-variable expression:

X =ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE

+ ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE

Map the SOP expression. Figure 4-44 shows the groupings and their corresponding

terms. Combining the terms yields the following minimized SOP expression:

X+ ADE + BCD + BCE + ACDE

DE

BC
00

01

10

ADE

00

01 11

10

)

1

DL
e\ 00

00

]

11

10

01 I

10

a

ACD

P
i

4-12 VHDL (optional)

This optional section provides a brief introduction to VHDL and is not meant to teach the
complete structure and syntax of the language. For more detailed information and
mstruction, refer to the footnote. Hardware description languages (HDLs) are tools for logic
design entry, called text entry. that are used to implement logic designs in programmable
logic devices. Although VHDL provides multiple ways to describe a logic circuit, only the
simplest and most direct programming examples of text entry are discussed here.

The V in VHDL#* stands for VHSIC (Very High Speed Integrated Circuit) and the HDL,
of course, stands for hardware description language. As mentioned, VHDL is a standard
language adopted by the IEEE (Institute of Electrical and Electronics Engineers) and is des-
ignated IEEE Std. 1076-1993. VHDL is a complex and comprehensive language and using
it to its full potential involves a lot of effort and experience.

VHDL provides three basic approaches to describing a digital circuit using software:
behavioral, data flow, and structural. We will restrict this discussion to the data flow ap-
proach in which you write Boolean-type statements to describe a logic circuit. Keep in mind
that VHDI ., as well as the other HDLs, 1s a tool for implementing digital designs and is.
therefore, a means to an end and not an end 1n 1tself.

It 1s relatively easy to write programs to describe simple logic circuits in VHDL. The logi-
cal operators are the following VHDL. keywords: and, or, not, nand, nor, xor, and xnor. The
two essential elements in any VHDL program are the entity and the architecture, and they must
be used together. The entity describes a given logic function in terms of its external inputs and
outputs, called ports. The architecture describes the internal operation of the logic function.

In its simplest form, the entity element consists of three statements: The first statement
assigns a name to a logic function; the second statement, called the port statement which is
indented, specifies the inputs and outputs; and the third statement 1s the end statement. Al-
though you would probably not write a VHDL program for a single gate. it is instructive to
start with a simple example such as an AND gate. The VHDL entity declaration for a
2-input AND gate is

entity AND_Gate2 is
port (A, B: in bit; X: out bit);
end entity AND_Gate2;

The blue boldtace terms are VHDL keywords; the other terms are 1dentifiers that you assign;
and the parentheses, colons, and semicolons are required VHDL syntax. As you can see, A and
B are specified as input bits and X is specified as an output bit. The port identifiers A. B. and
X as well as the entity name AND_Gate?2 are user-defined and can be renamed. As in all HDLs,
the placement of colons and semicolons is crucial and must be strictly adhered to.

The VHDL architecture element of the program for the 2-input AND gate described by
the entity is

architecture LogicFunction of AND_Gate? is
begin

X <= A and B;
end architecture LogicFunction;

Again, the VHDL keywords are blue boldface, and the semicolons and the assignment op-
crator <= are required syntax. The first statement of the architecture element must refer-
ence the entity name.,

The entity and the architecture are combined into a single VHDL program to describe
an AND gate, as illustrated in Figure 4-45.

entity AND_Gate? is
port (A, B: in bit; X: out bit);
end entity AND_Gate?2;

architecture LogicFunction of AND_ Gate2 is B | :

X <= Aand B;
end architecture LogicFunction;

Writing Boolean Expressions in VHDL As you saw, the expression for a 2-input AND
gate, X = AB, is written in VHDL as X <= A and B;. Any Boolean expression can be writ-
ten using VHDL keywords not, and, or, nand, nor, xor, and xnor. For example, the
Boolean expression X = A + B + Cis writtenin VHDL as X <= A or B or C:. The Boolean
expression X = AB + CD can be written as the VHDL statement X < (A and not B)or
(not C and D);. As another example, the VHDL. statement for a 2-input NAND gate can be
written as X <= not(A and B); or it can be written as X <= A nand B;.

I EXAMPLE 4-35
Write a VHDL program to describe the logic circuit in Figure 4-46.

FIGURE 4-46

>

C—
D—.

.
Y-

Solution This AND/OR logic circuit is described in Boolean algebra as
X=AB + CD
The VHDL program follows. The entity name is AND_OR.
entity AND_OR is
port (A, B, C, D: in bit; X: out bit);
end entity AND_OR;
architecture LogicFunction of AND_OR is
begin
X <= (A and B) or (C and D);

end architecture LogicFunction;

SECTION 4-12
REVIEW 1. What is an HDL?

2. Name the two essential design elements in a VHDL program.
3. What does the entity do?

4. What does the architecture do?

DIGITAL SYSTEM
APPLICATION

Seven-segment displays are used in many
types of products. The tablet-counting
and control system that was described in
Chapter 1 has two 7-segment displays.
These displays are used with logic circuits
that decode a binary coded decimal
(BCD) number and activate the
appropriate digits on the display. In this
digital system application, we focus on a
minimum-gate design for this to illustrate
an application of Boclean expressions
and the Karnaugh map. As an option,
VHDL is also applied.

The 7-Segment Display

Figure 4—47 shows a common display
format composed of seven elements or
segments. Energizing certain
combinations of these segments can
cause each of the ten decimal digits to be
displayed. Figure 4—48 illustrates this
method of digital display for each of the
ten digits by using a red segment to
represent one that is energized. To
produce a 1, segments b and ¢ are
energized; to produce a 2, segments a, b,
g €, and d are used; and so on.

LED Displays One common type of
7-segment display consists of light-emitting

FIGURE 4-47

Seven-segment display format showing
: arrangement of segments.

diodes (LEDs) arranged as shown in Figure

4—49. Each segment is an LED that emits
light when there is current through it In
Figure 4—49(a) the common-anode arrange-
| ment requires the driving circuit to provide a

ﬂ

I

e

low-level voltage in order to activate a given
segment. When a LOW is applied to a seg-
ment input, the LED is turned on, and there
is current through it. In Figure 4-49(b) the
common-cathede arrangement requires the
driver to provide a high-level voltage to ac-
tivate a segment. When a HIGH is applied to
a segment input, the LED is turned on and
there is current through it.

LCD Displays Anocther common type
of 7-segment display is the liquid crystal
display (LCD). LCDs operate by polariz-
ing light so that a nonactivated segment
reflects incident light and thus appears
invisible against its background. An acti-
vated segment does not reflect incident
light and thus appears dark. LCDs con-
sume much less power than LEDs but

=
s _.‘|

U

'::l
Y

l
f—=-%
—
—;l

ﬂ

|
—
‘::‘-r,‘
_.l
_l
‘:“.—.-'l
TE—
ey

|
]
%
I
o\
L-

FIGURE 4-48

T

l'\.

>

S
S
A —
k=%
I
e
lv—--_,,
o,

Display of decimal digits with a 7-segment device.

+V
a T [—

> x=
f f
b 1 b———aaes
g _ g o

b 4
e e
e =
—

{a) Common-anode

FIGURE 4-4%9

Arrangements of 7-segment LED
displays.

(b) Common-cathode

cannot be seen in the dark, while
LEDs can.

Segment Logic
i~}) Lf‘:

Each segment is used for various decimal
digits, but no one segment is used for all
ten digits. Therefore, each segment must
be activated by its own decoding circuit
that detects the occurrence of any of the

numbers in which the segment is used.

output columns of the table indicates an

' activated segment.

Since the BCD code does not include

' the binary values 1010, 1011, 1100, 1101,

: 1110, and 1111, these combinations will

| never appear on the inputs and can

therefore be treated as “don't care” (X)
conditions, as indicated in the truth table.

 To conform with the practice of most IC

i manufacturers, A represents the least

From Figures 4-47 and 4-48, the segments significant bit and D represents the most

that are required to be activated for each
displayed digit are determined and listed
in Table 4-9.

@] | ,. S¢ F 1ent L

(ruth 1abl

The segment decoding logic reqUIres f0ur :

binary coded decimal (BCD) inputs and

seven outputs, one for each segment in

gram of Figure 4-50. The multiple-out-

put truth table, shown in Table 4-10, is

| actually seven truth tables in one and

| could be separated into a separate table
for each segment. A 1 in the segment

significant bit in this particular application.

]
' D C - { +} <
<nnles Xpressions 1or the
’ (=T~ L g B U m i NS

Logic From the truth table, a standard

wa,m nenct

 SOP or POS expression can be written for
i each segment. For example, the standard
‘ SOP expression for segment a is

+ DCBA + DCBA + DCBA + DCBA |

and the standard SOP expression for
| segment e is

Expressions for the other segments can

be similarly developed. As you can see, the
expression for segment a has eight product
{ terms and the expression for segment e has
four product terms representing each of
the BCD inputs that activate that
segment. This means that the standard
SOP implementation of segment-a logic
requires an AND-OR circuit consisting of

. eight 4-input AND gates and one 8-input
OR gate. The implementation of segment-
' e logic requires four 4-input AND gates
and one 4-input OR gate. In both cases,

: four inverters are required to produce the

. complement of each variable.

[nw TON (T Lu

oment Logic Lets begln by obtaining

[=

a minimum SOP expression for segment a.

the display, as indicated in the block dia- ! 61 = DCBA + DCBA + DCBA + DCBA '

: A Karnaugh map for segment a is shown in

+ Figure 4-51 and the following steps are

i carried out:

, 5 Step 1. The 15 are mapped directly from
i e = DCBA + DCBA + DCBA + DCBA

Table 4-10.

TABLE 4-9

Active segments for each decimal

digit.

FIGURE 4-50

Block diagram of 7-segment logic
and display.

O &0 =1 Oy b B W R e

Binary
coded
decimal
input

D

SEGMENTS ACTIVATED

abcodef
b, ¢

a b de g

a, b, c d g
bcofg
acdf g
acdefg

& . bEe

abc def g
a, b, df g

7-segment
decoding

logic

e S B G e

7-segment display

DECIMAL INPUTS ‘ SEGMENT OUTPUTS
DIGIT c d e

D B A g
0 0 0 0 0 i 1 1 1 1 1 0
1 0 0 0 1 0 l 1 0 0 0 0
2 0 0 1 0 1] 0 1 1 0 |
3 0 0 1 1 i 1 | | 0 0 I
4 0] 0 0 0 | I 0 0 1 1
5 0 1 0] I 0 1 | 0 1 1
6 0 1 1 0 1 0 l 1 1] |
7 0 1 1 I | ! | 0 0 0 0
8 1 0 0 0 1 I | 1 1 1 |
9 1 0 0 1 | 1 I 1 0 1 1
10 1 0 1 0 X X X X X X X
11 I 0] 1 X X X X X X X
12 |] 0 0 X X X X X X X
13 1 1 0 1 X X X X X X X
14 | 1] 0 X X X X X % X
15 1 1 1 | X X X X X X X

Qutput = 1 means segment is activated (on)
Output = 0 means segment is not activated (off)

Output — X means “don’t care”

Step 2. All of the "don't cares” (X) are

placed on the map.

Step 3. The 1s are grouped as shown.

Step 4. Write the minimum product

"Don’t cares” and overlapping of !

Standard SOP expression:

DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA

BA
po_ W, o' 110
= B
00| 1 J 1\
ol OOl Y
N
1 it X |[x)] x
B V-
10 \l 1 \X X/

Minimum SOP expression: D + B + CA + CA

F l‘: 1_.:'

cells are utilized to form the the terms to form the minimum

largest groups possible. 5 SOP expression.

Keep in mind that "don’t cares” do not
term for each group and sum ¢ , _ i
+ have to be included in a group, but in this

| case all of them are used. Also, notice that
' the 1s in the corner cells are grouped with
: a “don’t care” using the “wrap around”

; adjacency of the corner cells.

A

FIGURE 4-52

Karnaugh map minimization of the segment-a logic expression.

The minimum logic implementation for segment a
of the 7-segment display.

Minimum Implementation of Segment-a

Logic The minimum SOP expression
taken from the Karnaugh map in Figure
4-52 for the segment-a logic is

D+B1CALCA

This expression can be implemented
with two 2-input AND gates, one 4-
input OR gate and two inverters as
shown in Figure 4-52. Compare this to
the standard SOP implementation for
segment-a logic discussed earlier; you'll

see that the number of gates and

inverters has been reduced from thirteen

to five and, as a result, the number of
interconnections has been significantly
reduced.

The minimum logic for each of the

remaining six segments (b, ¢, d, e, f,

- and g) can be obtained with a similar

approach.

\ 1 . . A
VHDL Implementation (optional)

i All of the segment logic can be described by

[}
t

| described by the following VHDL program:

t
1
t
1
1
L3

: VHDL for implementation in a programmable

' logic device. Segment-a logic can be

entity SEGLOGIC is

port (A, B, C, D: in bit; SEGa: out bit);

end entity SEGLOGIC;

architecture LogicFunction of
SEGLOGIC is

begin
SEGa <= (Aand C) or (not A
and not C) or B or D

end architecture LogicFunction;

System Assignment

B Activity 1: Determine the minimum

logic for segment b.

W Activity 2: Determine the minimum

logic for segment c.

B Activity 3: Determine the minimum

logic for segment .

. W Activity 4: Determine the minimum

logic for segment e.

B Activity 5: Determine the minimum

logic for segment .

W Activity 6: Determine the minimum

logic for segment g.

® Optional Activity: Complete the VHDL
program for all seven segments by
including each segment logic

description in the architecture.

SUMMARY

m Gate symbols and Boolean expressions for the outputs of an inverter and 2-input gates are

shown in Figure 4-53.

AB

FIGURE 4-53

A
T
B

A
B

) >

A+B

B Commutative laws: A+ B=B+ A
AB = BA

B Associativelaws: A+ B+ (O =A+B)+C
A(BC) = (AB)C

® Distributive law: A(B + C) = AB + AC

® Booleanrules: 1. A+ 0=A A = A
2. A+1=1 8 A-A=0
3. A-0=0 9. A=A
4, A-l=4 10. A+AB=A
5. AtA=A 11. A+AB=A+8B
6. A+A=1 12. A+BA+CO=A+BC

B DeMorgan’s theorems:

1. The complement of a product is equal to the sum of the complements of the terms in the

product.

XY=X+Y

2 The complement of a sum 1s equal to the product of the complements of the terms in the sum.

X+ Y=2AY

® Karnaugh maps for 3 and 4 variables are shown in Figure 4-54. A 5-variable map is formed

from two 4-variable maps.

-
0
c
:?
m
N
!
n
a

AB
00

01

11

10

3-vanable

cD

AB
00

01

11

10

® The basic design element in VHDL i1s an entity/architecture pair.

00 01 11 10

4-variable

KEY TERMS

Complement The inverse or opposite of a number. In Boolean algebra, the inverse function, ex-
pressed with a bar over a vanable. The complement of a 1 is (), and vice versa.

“Don’t care” A combination of input literals that cannot occur and can be used as a 1 or a() on a Kar-
naugh map for simplification.

Karnaugh map An arrangement of cells representing the combinations of literals in a Boolean ex-
& P g
pression and used for a systematic simplification of the expression.

Minimization The process that results in an SOP or POS Boolean expression that contains the fewest
possible literals per term.

Product-of-sums (POS) A form of Boolean expression that is basically the ANDing of ORed terims.
Product term The Boolean product of two or more literals equivalent to an AND operation.
Sum-of-products (SOP) A form of Boolean expression that is basically the ORing of ANDed terms.
Sum term The Boolean sum of two or more literals equivalent to an OR operation.

Variable A symbol used to represent a logical quantity that can have a value of 1 or 0, vsually des-
ignated by an 1tahic letter.

VHDL A standard hardware description language. [EEE Std. 1076-1993.

EXAMPLE 4-30

Map the following standard POS expression on a Karnaugh map:

(A+B+C+D{A+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)

solution:
(A+B+C+D)YA+B+C+D)A+B+C+D)A+B+C+D)A+B+C+D)
1100 1011 0010 1111 0011
r D o g !'0' | 8000 2001 001& OOJOO
o R 0100 |o0101 |o111 [o110
4 5 7 6
0l
1100 1101 111& 1110
11)) ~——A+B+C+D 12 0 13 14
/ 1000 1001 10101 1010
10l ‘ 8 9 10
Related Proo s cxr cxsxcxrn - simplify the following

standard SOP expression:

WXYZ+WXYZ+WXYZ+WXYZ+WYZ

COMBINATIONAL LOGIC

ANALYSIS

CHAPTER OUTLINE CHAPTER OBJECTIVES

5-1 Basic Combinational Logic Circuits
5-2 Implementing Combinational Logic
5-3 The Universal Property of NAND and NOR Gates

5-4 Combinational Logic Using NAND and NOR
Gates

5-5 Logic Circuit Operation with Pulse Waveform
Inputs

5-6 Combinational Logic with VHDL (optional)
5-7 Troubleshooting

m Digital System Application

Analyze basic combinational logic circuits, such as AND-OR,
AND-OR-Invert, exclusive-OR, and exclusive-NOR

Use AND-OR and AND-OR-Invert circuits to implement sum-
of-products (SOP) and product-of-sums (POS) expressions

Write the Boolean output expression for any combinational
logic circuit

Develop a truth table from the output expression for a
combinational logic circuit

Use the Karnaugh map to expand an output expression
containing terms with missing variables into a full SOP form

Design a combinational logic circuit for a given Boolean output

expression
Design a combinational logic circuit for a given truth table
Simplify a combinational logic circuit to its minimum form

Use NAND gates to implement any combinational logic

function

Use NOR gates to implement any combinational logic function
Wiite VHDL programs for simple logic circuits

Troubleshoot faulty logic circuits

Troubleshoot logic circuits by using signal tracing and waveform

analysis

Apply combinational logic to a system application

KEY TERMS

Universal gate Signal

Negative-OR Node
Negative-AND Signal tracing

Component

INTRODUCTION

In Chapters 3 and 4, logic gates were discussed on an
individual basis and in simple combinations. You were
introduced to SOP and POS implementations, which are
basic forms of combinational logic. When logic gates are
connected together to produce a specified output for
certain specified combinations of input variables, with no
storage involved, the resulting circuit is in the category of
combinational logic. In combinational logic, the output
level is at all times dependent on the combination of input
levels. This chapter expands on the material introduced in
earlier chapters with a coverage of the analysis, design, and
troubleshooting of various combinational logic circuits. The
VHDL structural approach is introduced and applied to
combinational logic.

5-1 BASIC COMBINATIONAL LOGIC CIRCUITS

In Chapter 4, you learned that SOP expressions are implemented with an AND gate for each
product term and one OR gate for summing all of the product terms. As you know. this SOP
implementation is called AND-OR logic and 1s the basic form for realizing standard Boolean
functions. In this section, the AND-OR and the AND-OR-Invert are examined; the exclusive-
OR and exclusive-NOR gates, which are actually a form of AND-OR logic, are also covered.

AND-OR Logic F S
= -
B X=AB+(CD | ¥
&
- (
e A -
(a) Logic diagram {(ANSI standard distinctive (b) ANSI standard rectangular outline symbol
shape symbols)

An AND-OR circuit directly implements an SOP expression, assuming the complements
(if any) of the variables are available. The operation of the AND-OR circuit in Figure 5-1

1§ stated as follows:

OouTPUT

INPUTS

I EXAMPLE 5-1

In a certain chemical-processing plant, a liquid chemical 1s used in a manufacturing
process. The chemical is stored in three different tanks. A level sensor in each tank
produces a HIGH voltage when the level of chemical in the tank drops below a
specified point.

Design a circuit that monitors the chemical level in each tank and indicates when
the level in any two of the tanks drops below the specified point.

B C
A ¥ i
G)
G - X | Low-level
2 indicator

AND-OR-Invert Logic

When the output of an AND-OR circuit 1s complemented (inverted), it results in an
AND-OR-Invert circuit. Recall that AND-OR logic directly implements SOP expres-
sions. POS expressions can be implemented with AND-OR-Invert logic. This is illus-
trated as follows, starting with a POS expression and developing the corresponding
AND-OR-Invert expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

A & >1
A —: AB POS 8
B AB+CD AB+CD = (A+BXC+D) fie—
e %
o C (i

The sensors in the chemical tanks of Example 5-1 are being replaced by a new model
that produces a LOW voltage instead of a HIGH voltage when the level of the
chemical in the tank drops below a critical point.

DS
Low-level
}' indicator
G
¢ }

Exclusive-OR Logic

A— o } X = AB + AB

X=A0OB

x'_q :4_ :I
X — X
B B—

(a) Logic diagram (b) ANSI distinctive (c) ANSI rectangular
shape symbol outline symbol

B —e

CE

b -3
v~

Exclusive-NOR Logic

X = AB + AB = (AB)(AB) = (A + B)(A + B) = AB + AB

>
P

(a) X=AB+AB

B

A—@——

il

o
>O_ﬁ

B
¥

L

(b) X=AB + AB

|sscno~ 5-1
REVIEW I

Answers are at the end of the
chapter.

Determine the output (1 or 0) of a 4-variable AND-OR-lnvert circuit for each of
the following input conditions:

() A=1,8=0,C=1,0=0 (b) A=1,B=1,C=0,D=1
() A=0,B=1,C=1D=1

. Determine the output (1 or 0) of an exclusive-OR gate for each of the following

input conditions:
(aJ A=1,B=0 (b)A=1B=1
() A=0B8=1 (d)A=0B=0

. Develop the truth table for a certain 3-input logic circuit with the output

expression X = ABC + ABC + ABC + ABC + ABC.

Draw the logic diagram for an exclusive-NOR circuit.

5-2 IMPLEMENTING COMBINATIONAL LOGIC

In this section, examples are used to illustrate how to implement a logic circuit from a
Boolean expression or a truth table. Minimization of a logic circuit using the methods

covered in Chapter 4 is also included.

From a Boolean Expression to a Logic Circuit

et’s examine the following Boolean expression: ;] L AND

X =AB + CDE X = AB + CDE

™

- "OR

T
B_
:D—X=4B+CDE

r— CDE

AND One inverter to form D

ll - NOT
| | — OR
X = AB(CD + EF)

T T

Two 2-input AND gates to form CD and EF
One 2-input OR gate to form CD + EF

LR 5 B

AND One 3-input AND gate to form X

AB(CD + EF) = ABCD + ABEF

j— X =AB(CD + EF)

X =ABCD + ABEF

(a) (b) Sum-of-products implementation of the circuit in part (a)

From a Truth Table to a Logic Circuit

INPUTS OuUTPUT
B X | PRODUCT TERM

C
0
[
0
1
0
1
0
1

X = ABC + ABC

=i .

ABC
ABC

e e e == R o R i
—_— = O O = = O O
CORNCOR R = = (RCTE CER

— ABC
|

Y

vy
*——
ﬁ

:D— X = ABC + ABC

Fl

Y
il

I EXAMPLE 5-3

Design a logic circuit to implement the operation specified in the truth table of Table 5—4.

TABLE 5-4

X = ABC + ABC + ABC

— el o @m

o

0
0
1

— T D e

(===

0
]
0

0
0
0

—_—

INPUTS OouTPUT |
B c X | PRODUCT TERM

ABC

ABC ¢

aY

& N\ ABC
b Y

1
Y.

. -

ABC

I EXAMPLE 5-4

Develop a logic circuit with four input variables that will only produce a 1 output
when exactly three input variables are 1s.

X = ABCD + ABCD + ABCD + ABCD
0 1 1 1 ABCD
1 0 1 1 ABCD
1 1 0 1 ABCD D C B A
1 I ! 0 ABCD] |
4
|

YYYY

ABCD

¢ ABCD
’ L m
[§
—
@
-

:) ABCD

I EXAMPLE 5-5

Reduce the combinational logic circuit in Figure 5-12 to a minimum form.

DD

CT = _

X=(ABC)C+ABC+ D

VY'Y

X=@+§+?W+E+§+?+D
=AC+BC+CC+A+B+C+D
—AC+BC+C+A+B+£+D
=CA+B+1)+A+B+D

X=A+B+C+D

— >

whal.

l EXAMPLE 5-6

Solution

Minimize the combinational logic circuit in Figure 5—14. Inverters for the
complemented variables are not shown.

X =ABC(D + D) + ABCD + ABCD + ABCD

= ABCD + ABCD + ABCD + ABCD + ABCD

cD

AB
00

01

11

10

(a)

00

01

11

10

Q -

ACD

D

(b)

il

v

X = ABC + ABCD + ABCD + ABCD

A.
B
c
.‘q

)
=D
-

;

=>—

g

Pt —

)

0 L

SECTION 5-2
REVIEW 1. Implement the following Boolean expressions as they are stated:

(a) X=ABC+AB+AC (b) X=AB(C + DE)

2. Develop a logic circuit that will produce a 1 on its output only when all three
inputs are 1s or when all three inputs are 0s.

3. Reduce the circuits in Question 1 to minimum SOP form.

5-3 THE UNIVERSAL PROPERTY OF NAND AND NOR GATES

Up to this point. you have studied combinational circuits implemented with AND gates,
OR gates. and mverters. In this section. the universal property of the NAND gate and
the NOR gate is discussed. The universality of the NAND gate means that 1t can be used
as an inverter and that combinations of NAND gates can be used to implement the
AND, OR, and NOR operations. Similarly, the NOR gate can be used to implement the
inverter (NOT), AND, OR, and NAND operations.

The NAND Gate as a Universal Logic Element

A—E}E A {>3 A

(a) One NAND gate used as an inverter

AB=AB AB
B - p e

(b) Two NAND gates used as an AND gate

' A
x{ G, N)

| G, Yo—AB=A+B T) D—ass
5—¢ | G p=

{(c) Three NAND gates used as an OR gate

The NOR Gate as a Universal Logic Element

J'—_I-B A+B

]

(b) Two NOR zates used as an OR gate

(c) Three NOR gates used as an AND gate

SECTION 5-3
REVIEW 1. Use NAND gates to implement each expression:

(a) X=A+B (b) X=AB
2. Use NOR gates to implement each expression:
(a) X=A+B (b) X=AB

—— — e ————————— 41, = i e o

5-4 COMBINATIONAL LOGIC USING NAND AND NOR GATES

In this section, you will see how NAND and NOR gates can be used to implement a
logic function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent
operation called the negative-OR and that the NOR gate exhibits an equivalent operation
called the negative-AND. You will see how the use of the appropriate symbols to
represent the equivalent operations makes “reading” a logic diagram easier.

NAND Logic Sl
NAND = | | SRR negative-OR
FIGURE 5-18 A— B
NAND logic for X = AB + CD. g —0
GIDOiX:AB +CD
e
D— CcD

= (A + B)(C + D) — AB + CD

Bubbles cancel

A — —
G
g | G p__ |
G, AB+CD ——— AB+CD
C — (—_—
D——1 3 D U3

Bubbles cancel

{c) AND-OR equivalent (b) Equivalent NAND/Negatine-OR logic diagram

A — AL ABE ‘ B
5 —— ABCD
N)C

D —

- -
F EF

ABCD + EF
={AB+ D+ EF
~(AB+ C)D + EF

Do— (ABCD)EF

(a) Several Boolean steps are required to arrive at final output expression.

AND
Bubhle cancels bar

AND
A — AB it
> AB+ C Bubble

= ((ABCW cancels
f) = ‘ bar B
Bubble adds " | :D7 (AB + C\D + EF
barto C ; } i
F— L

EF Bubble
cancels bar

OR
AND

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

I EXAMPLE 5-7

Redraw the logic diagram and develop the output expression for the circuit in
Figure 5-21 using the appropriate dual symbols.

fq
G
; DO_H G

" - i} " ‘
E _ﬁ)i}

B

A :j : > i+
B IJ G, (A + BYC
C

)6 — x=G+ B+ B+ BF
C: o~ D+EBF

D D+ E
E

I EXAMPLE 5-8

Implement each expression with NAND logic using appropriate dual symbols:

(a) ABC+DE (b) ABC+ D + E

Bubble cancels bar

4 | ABC Bubble cancels bar A . T
B — B —

F C) o=,

D ABC + DE A\BC+D+E

E ITE Bubble cancels bar Bubbles add bars to D and F

(a) (b)

NOR Logic

NOR — T T negative-AND

X=A+B+C+D=(A+B)(C+ D)= (A+ B)(C + D)

Ly e

o

G X=(A4 BXC+D)

C
D

G- acts as OR

Bubbles cancel

| G>

L o
(A+B)YC+ D) B—u - BXWC+ Dy

G acts as AND

s o S -

;

G, acts as OR Bubbles cancel

(a) (b)

A A+B =
:Do DA+B+C —
: > _

D
; A+B+C+D+E+F

£ j_)_>07 & =(A+B+C+D)E+F)
& A “(A+B+C+DXE+F)
; ((A + B)C + D)(E + F)

HA+&E+DMHF?

(a) Final output expression is obtained after several Boolean steps.

OR
Bubble cancel -
ubble cancels bar OR

A A+B . l
B :DO t (8 F I A+BXC+D Bubble
C —C_j D D— cancels bar

| C} [(A+B)C+DIE+F)
Bubble adds barto C E _ i

— AND
F E+F Bubble
cancels
bar
AND

OR

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

I EXAMPLE 5-9

Using appropriate dual symbols, redraw the logic diagram and develop the output
expression for the circuit in Figure 5-27.

B—d ° AB + C
£
L &
6)—

: —O
D—CG DE
E gl Bo DE + F
¥

X=((A+B)+C)+((D+E)+F) X = (AB + CUDE + F) = (AB + CXDE + F)

Isecnon 5-4 il
REVIEW 1. Implement the expression X = (A + B + C)DE by using NAND logic.

2. Implement the expression X = ABC + (D + E) with NOR logic.

5-6 COMBINATIONAL LOGIC WITH VHDL (optional)

The purpose of describing logic using VHDL is so that it can be programmed into a
PLD. The data flow approach to writing a VHDL program was described in Chapter 4.
In this optional section, both the data flow approach using Boolean expressions and the
structural approach are used to develop VHDL code for describing logic circuits. The
VHDL component is introduced and used to illustrate structural descriptions. Some
aspects of software development tools are discussed.

Structural Approach to VHDL Programming

The structural approach to writing a VHDL description of 2 logic function can be compared
to installing IC devices on a circuit board and interconnecting them with wires. With the

structural approach, you describe logic functions and specity how they are connected to-
gether. The VHDL component is a way to predefine a logic function for repeated use in a
program or in other programs. The component can be used to describe anything from a sum-
ple logic gate to a complex logic function. The VHDL signal can be thought of as a way to
specity a “wire” connection between components.

Page 281

Figure 5-35 provides a simplified comparison of the structural approach to a hardware
implementation on a circuit board.

Inputs defined in port statement

Interconnections

A— - Signals
i“'.:- ; |) s "
ICDevice A S VHDL
s ' : | g component
| _
! ':‘ L.
IC Device (VHDL
component
ICDevice B [N ; VHDL |
| component Output defined
——= in port statement
(a) Hardware implementation with fixed-function logic (b) VHDL structural implementation

FIGURE 5-35

Simplified comparison of the VHDL structural approach to a hardware implementation. The VHDL
signals correspond to the interconnections on the circuit board, and the VHDL components

correspond to the IC devices.

VHDL Components

A VHDL component describes predefined logic that can be stored as a package declaration
in a VHDL library and called as many times as necessary in a program. You can use com-
ponents to avoid repeating the same code over and over within a program. For example, you
can create a VHDL component for an AND gate and then use it as many times as you wish
without having to write a program for an AND gate every time you need one.

VHDL components are stored and are available for use when you write a program. This
18 similar to having, for example, a storage bin of ICs available when you are constructing
a circuit. Every time you need to use one in your circuit, you reach into the storage bin and
place it on the circuit board.

‘The VHDL program for any logic function can become a component and used whenever
necessary in a larger program with the use of a component declaration of the following gen-
eral form. Component is a VHDL keyword.

component name_of_component is
port (port definitions);

end component name_of _component:

For simplicity, let’s assume that there are predefined VHDL data flow descriptions of a
2-input AND gate with the entity name AND_gate and a 2-input OR gate with the entity

name OR_gate, as shown in Figure 5-36.
Next, assume that you are writing a program for a logic circuit that has several

AND gates. Instead of rewriting the program in Figure 5-36 over and over, you can use

ntity AND_gate |
yort (A. B: in bit; X: oud bit);

A _} end entity AND_gate;
X
B chitecture ANDfunction +f AND_gate 's

X <= A and B:
2-input AND gate end architecture ANDfunction;

itity OR_gate is
ort (A, B: in bit; X: oul bit);

A nd entity OR_ gate:
B chitecture ORfunction ¢f OR_gate is

X <=AourB;
2-input OR gate nd architecture ORfunction:

a component declaration to specify the AND gate. The port statement in the component
declaration must correspond to the port statement in the entity declaration of the AND

gate.

component AND_gate is
port (A, B: in bit; X: out bit);

end component AND_gate;

Using Components in a Program To use a component 1n a program. you must write a
component instantiation statement for each instance in which the component is used. You
can think of a component instantiation as a request or call for the component to be used in
the main program. For example, the simple SOP logic circuit in Figure 5-37 has two AND
gates and one OR gate. Therefore, the VHDL program for this circuit will have two com-
ponents and three component instantiations or calls.

Signals In VHDL, signals are analogous to wires that interconnect components on a cir-
cuit board. The signals in Figure 5-37 are named OUT1 and OUT?2. Signals are the internal
connections i the logic circuit and are treated differently than the inputs and outputs.
Whereas the inputs and outputs are declared in the entity declaration using the port state-
ment, the signals are declared within the architecture using the signal statement. Signal is
a VHDL keyword.

The Program The program for the logic in Figure 5-37 begins with an entity declaration
as follows:

--Program for the logic circuit in Figure 5-37
entity AND_OR_Logic is
port (INT, IN2, IN3, IN4: in bit: OUT3: out bit):

end entity AND_OR_Logic;
N1 ——BJUTI
[N2 —

N3 —
(N4 —1 ouT2

G3 OuUT3

The architecture declaration contains the component declarations for the AND gate and
the OR gate, the signal definitions, and the component instantiations.

architecture LogicOperation of AND_OR_Logic is
component AND_gate is Component declaration for
e i the AND gate
port (A. B: in bit): X: out bit);

end component AND_gate;

component OR_gate is Component declaration for

the OR gate
port (A, B: in bit; X: out bit); / g

end component OR_gate;

signal OUTI1, OUT?Z: bit; <———— Signal declaration
begin
G1: AND_gate port map (A =>IN1, B =>IN2, X => OUTI);
\
G2: AND._gate port map (A => IN3, B => IN4, X => OUT2); <—— Component
e instantiations
(G3: OR_gate port map (A => OUTI1, B => OUT2, X => OUT3);

end architecture LogicOperation;

Component Instantiations Let’s look at the component instantiations. First, notice that
the component instantiations appear between the keyword begin and the end statement. For
each instantiation an identifier is defined, such as G1, G2, and G3 in this case. Then the
component name is specified. The port map essentially makes all the connections for the
logic function using the operator =>. For example, the first instantiation,

G1: AND_gate port map (A =>IN1, B => IN2, X => OUT1),

can be explained as follows: Input A of AND gate G1 is connected to input INI, input B of the
gate is connected to input IN2, and the output X of the gate is connected to the signal OUT].

The three instantiation statements together completely describe the logic circuit in
Figure 5-37, as illustrated in Figure 5-38.

A => NI X =>0UTI

—]A \ OUTI
X

B s
A => OUT]I
IN2 :
Ve N\ X =>OUT3
B =>[IN2 ouTl X /\

! &
ouT3
A=>IN3 ouT2 &

A f
N\ ~,
e Ny N/
IN3 = B => OUT?2
G2 X ==
)) ——iB { QUT2
Although the data flow approach using Boolean expressions wou IN4 = N
probably the best way to describe this particular circuit, we have ust , _I‘;';_] X —> OUT?
explain the concept of the structural approach. Example 5-14 compares e structural ana

data flow approaches to writing a VHDL program for an SOP logic circuit.

| EXAMPLE 5-14

Write a VHDL program for the SOP logic circuit in Figure 5-39 using the structural
approach. Assume that VHDL components for a 3-input NAND gate and for a 2-input
NAND are available. Notice the NAND gate G4 is shown as a negative-OR.

The components and component instantiations are highlighted.
--Program for the logic circuit in Figure 5-39
entity SOP_Logic is
port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);
end entity SOP_Logic:
architecture LogicOperation of SOP_Logic is
-- component declaration for 3-input NAND gate
component NAND_gate3 is
port (A, B, C: in bit X: out bit);
end component NAND_gate3;
-- component declaration for 2-input NAND gate
component NAND_gate2 is
port (A, B: in bit; X: out bit);
end component NAND_gate;

signal OUT1, OUT2, OUT3: bit;
begin

G1: NAND_gate3 port map (A => IN1. B =>1IN2, C =>IN3, X => OUTI);

G2: NAND_gate3 port map (A => IN4. B => IN5. C => IN6. X => OUT2):

G3: NAND_gate2 port map (A => IN7. B =>IN8. X => OUT3):

G4: NAND_gate3 port map (A => OUTI, B => OUT2, C => OUT3. X => OUT4);

end architecture LogicOperation;

For comparison purposes, let’s write the program for the logic circuit in Figure 5-39
using the data flow approach.
entity SOP_Logic is

port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);
end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is
begin
OUT4 <= (IN1 and IN2 and IN3) or (IN4 and IN5 and IN6) or (IN7 and IN8);
end architecture LogicOperation;
As you can see, the data flow approach results in @a much simpler code for this
particular logic function. However, in situations where a logic function consists of

many blocks of complex logic, the structural approach might have an advantage over
the data flow approach.

5-7 TROUBLESHOOTING Page 287

Page 293

DIGITAL SYSTEM
APPLICATION

SUMMARY

AND-OR logic produces an output expression i SOP form.
AND-OR-Iuavert logic produces a complemented SOP form. which is actually a POS form.

The operational symbol for exclusive-OR is ©. An exclusive-OR expression can be stated in
two equivalent ways:

AB+AB=AOB
To do an analysis of a logic circuit, start with the logic circuit, and develop the Boolean output
expression or the truth table or both.

= Implementation of a logic circuit is the process in which you start with the Boolean output
expressions or the truth table and develop a logic circuit that produces the output function.

All NAND or NOR logic diagrams should be drawn using appropriate dual symbols so that
bubble outputs are connected to bubble inputs and nonbubble outputs are connected to
nonbubble inputs.

When two negation indicators (bubbles) are connected, they effectively cancel each other.

A VHDL component 1s a predefined logic function stored tor use throughout a program or in
other programs.

A component instantiation 1s used to call for a component in & program.

A VHDL signal effectively acts as an internal interconnection in a VHDL structural
description.

KEY TERMS

Component A VHDL feature that can be used to predefine a logic function tfor multiple use through-
out a program or programs.

Negative-AND The dual operation of a NOR gate when the inputs are active-LOW.

Negative-OR The dual operation of a NAND gate when the inputs are active-LOW.

Node A common connection point in a circuit in which a gate output is connected to one or more gate
inputs.

Signal A waveform; a type of VHDL object that holds data.
Signal tracing A troubleshooting technique in which wavetorms are observed in a step-by-step man-

ner beginning at the input and working toward the output or vice versa. At each point the observed
waveform is compared with the correct signal for that point.

Universal gate Either a NAND gate or a NOR gate. The term universal refers to the property of a
gate that permits any logic function to be implemented by that gate or by a combination of gates of
that kind.

Code Converters
Multiplexers (Data Selectors)
Demultiplexers

10. Parity Generators/Checkers
11. Troubleshooting

12. Digital System Application

1. Basic Adders

2. Parallel Binary Adders

3. Ripple Carry versus Look-Ahead Carry Adders
4. Comparators

5. Decoders

6. Encoders

7.

8.

9.

Chapter Objectives

Distinguish between half-adders and full-adders

. Use full-adders to implement multibit parallel binary adders
Explain the differences between ripple carry and look-ahead
carry parallel adders

. Use the magnitude comparator to determine the relationship
between two binary numbers and use cascaded comparators to
handle the comparison of larger numbers

Implement a basic binary decoder

Use BCD-to-7 -segment decoders in display systems

Apply a decimal-to-BCD priority encoder in a simple keyboard
application

Convert from binary to Gray code, and Gray code to binary by
using logic devices

Apply multiplexers 1n data selection, multiplexed displays, logic

6-1 BASIC ADDERS

Adders are important in computers and also 1n other types of digital
systems 1n which numerical data are processed. An understanding of
the basic adder operation 1s fundamental to the study of digital
systems. In this section, the half-adder and the full adder are

introduced.

HALFADDER

Z —+ —
(=i A by Sum) 8_'_?:(1)
Input bits > Outputs 1+0=1
— B Gou [— Camy 1+1=10

C — AB
0 0 0 0 out

0 1 0 |

1 ; . | > =A®B
| | 1 0
2 = sum

S-—A®B=AB+AB

y

C,..n = output carry
A and B = input variables (operands)

ST Pl B

A —
B ——

FULL ADDER

2
Input { 8 x Sum
bits -
Cout Output carry
Input carmy —— C.,

T=(AOB®C,

Couw = AB + (A ®© B)(,

ARG SN S S S
0 0 0 0 0
0 0 | 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 |
1 0 | I 0
i 1 0 1 0
1 1 1 1 1

C., = input carry, sometimes designated as C7
C,. = output carry. sometimes designated as CO
2 = sum

A and B = input variables (operands)

FULL ADDER

2
lnp_ut A > S
bits
— B
Cout Output carry
Input carmy —— C.,
Half-adder Half-adder
2 2

L —A)2 A >

(a) Arrangement of two half-adders to form a full-adder

EXAMPLE 6-1

For each of the three full-adders in Figure 6-6, determine the outputs
for the inputs shown.

2 2 2
Il — A l— A]l — A
= | > v |
B 1— B 0 — B
Coul Coul Cout
0O —GC, 0 Ci, 1 Ci

(a) (b) ()

SECTION 6-1 REVIEW

1. Determine the sum (2) and the output carry (C_,, of a half-adder
for each set of input bits:

(a) 01 (b) 00 (c) 10 (d) 11

2. A full-adder has C., = 1. What are the sum (%) and the output
carry C, . whenA=1and B=1?

out

6-2 PARALLEL BINARY ADDERS

_— Carry bit from right column

1
11

+ 01

100
In this case. the '[‘
carry bil from
second column
becomes a sum bit.

General format. addition
of two 2-bit numbers:

AZAI
+ B-B,

F33.3,

For n bits addition we need n-1 full
adders and 1 half adder but in IC

package there are n full adder?

0 et
A B C, A B C,
COU[E COUI Z

EXAMPLE 6-2

Determine the sum generated by the 3-bit parallel adder in Figure 6-8
and show the intermediate carries when the binary numbers 101 and
011 are being added.

1 0 0 I 11

A B C, A B G A oo
Cout) C{)ul 2, Cout)
] |

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is
implemented with four full-adder stages. The Carry output of each
adder 1s connected to the carry input of the next higher-order adder as

indicated. These are called internal carries,

A B Cy, A B C, A B C, A B C,

MSB) (LSB)
Cuul Z Coul): Coul I‘ Coul 2

iy e oy

[
4
o

(a) Block diagram

Four-Bit Parallel Adders

In terms of the method used to handle carries in a parallel adder. there

are two 2z <-ahead
A 4 ™
adder. € :]
Binary) 2 L A yd 2 | -bit
numberA | —— 3 3 | sum
—— 4/ N4 —)
Ve l ™
Binary) 2 . B
number B ——F 3
\—
(M i
Input o C, Output
CAarmy I carry
(_

(b) Logic symbol

(a) Block diagram

EXAMPLE 6-3

Use the 4-bit parallel adder truth table (Table 6-3) to find the sum and
output carry for the addition of the following two 4-bit numbers if the
input carry (C_ ;) 1s O:

A,A4,A, = 1100 and B,B,B,B, = 1100

THE 74L 3283 4-BIT PARALLEL ADDER

This device may be available in other TTL or CMOS families. Check
the Texas Instruments website at www.ti.com

®1,y =
(3)
A
a4 |, [(4)
a2 |, (1)
© |~ (13)
@) U0
(15) (B

an |,)

™M |c, | ©

AW N =

(8)

GND
(a) Pin diagram of 748283 (b) 74LS283 logic symbol

THE 74L5S283 4-BIT PARALLEL ADDER

| C Data Sheet Characteristics Recall that logic gates have one
specified propagation delay time, t, , from an input to the output. For
IC logic, there may be several different specifications for t . The 4-bit
parallel adder has the four t, specifications shown in Figure 6-11.
which 1s part of a 74L.S283 data sheet.

Limits
Symbol Parameter Min Typ Max | Unit
el H Propagation delay. ¢, input to 16 24
I'pHL any X output 15 24 =
oL H Propagation delay. any A or B input 15 24
foyr to X outputs 15 24 =
'pLH Propagation delay. ¢, input to L1 17 -
IPHL C4 nutpu[[1 22 3
'p1 1 Propagation delay. any A or B input [17
fpHL to C; output 12 17 p=

ADDER EXPANSION

B, B- B, Bs A, 15 4, A5 BB, B- B, 4; 4; 4, A
BioBisBiuB)x A Ays Ay Ay Byl Bio By Sya, dinle By By B, Bs Ay A A, A By By B. B, AyA
4321743 2 ¢ 4321 4321¢, 43321 432714, 4320 %497 Le
R R R D s R S R S PR

B A B A B A A
)3 b 5 ¥

o s e] Cow 43 21 Cou 43 21
(o Y 3 3L oS S 3 e o8 ST e dgs

Cs T IR T AR P S O

(a) Cascading of two 4-bit adders to form an 8-bit adder

process is known as cascading.

EXAMPLE 6-4

Show how two 74L.S283 adders can be connected to form an 8-bit
parallel adder?
Show output bits for the following 8-bit input numbers:

AASAAAAAA, =10111001 and B,B,B,B.B,B,B,B, = 10011110

b b3
g B o B
@, 04,
02 14 s ra
| (12) N ; 4) . h (12) i | (4) 5
o | | Er
¥ (13) § X (13) i
i — Tao | - e lC LY M s
: @], 4 3 , @], : |
I iE o i (15) B
4 11) = g L ;
; (4 B, 4
(7) 9) (7) 9)
: CO C4 CO C4 b}

— Low-order adder High-order adder

An Application *

% Six-Position Adder Module
1L.OKO
A simple voting — o (P 3
system that can be t—o—— I PN . o
used to = -, . - 5 [AW
L 4 1 BCD AAA -
i = il adde 2 R et YWV
simultancously ‘ ; Fulradder | z[; Tacgmens L ll ll
provide the number NOo——— > J)]] i En LM =
" " T 3 = AN
of "yes" votes and the YES 0 z "
—O— — <8 .
number of "no" votes N 5 I PR ¢, G
O—y in
for lmmedlately S— = — Parallel adder 1
determining opinions. ¢—o——o VES logic
NO c—
YES O o A Z b
¢ —O0———0 z |
NO 0—— i £ Co [i A NO
e T~ *’3_ Cin i | BCD VWA .
10 AA
- o Full-adder 3 z[3 | | B ?(_j!::cg.;d"::-n % l '
" - ; 47 WA
Switches —01A 3 B = JVW_
r
—0 Gy g G P
— Parallel adder 2
Full-adder 4

NO logic

Resistors should be connected from the inputs of the full-adders
to ground.

SECTION 6-2 REVIEW QUESTIONS

1. Two 4-bit numbers (1101 and 1011) are applied to a 4-bit
parallel adder. The mput carry is 1. Determine the sum X and the

output carry.
1. 2. How many 74L.S283 adders would be required to add two
binary numbers each representing decimal numbers up through

1000,,?

6-3 RIPPLE CARRY Vs. LOOK-AHEAD CARRY ADDERS

A ripple carry adder is one in which the carry output of each full-adder is

connected to the carry input of the next higher-order stage.
Carry propagation delay: The time from the application of the input carry

until the output carry occurs, assuming other inputs are already present.

1 1 1 0 1 O I O
i i e ‘ [[~ L
A BC||A A B C,||* A B C,||* A B G|
» 5 » ;. » :
» ; » - » » |
» : » ; » . y :
Cout)Y ! Cout b : C()ul 2 v Cou[b
v l ! 4 i 4. 3 Ii
? i l : ? | } L Vi j : Vi]
== MSB | T Pt e
FA4 FA3 FA2 FA
——— 8 ns———>+—— 8 ny - 8 ns > &ns —»
[32 ns o

Thelook-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time
required for the carries to propagate, or ripple, through all the stages of a
parallel adder. One method of speeding up the addition process by
eliminating this ripple carry delay is called look-ahead carry addition.

C...,= AB + (A ® B)C,,

C, =A, By +(A;®B,).C,=1, (A;,By,Cp)
/

J—

C,=A, B +(A,®B,).C,=f, (A,B,,A, ,B,, C,)

—

C,=A, B,+(A,®B,).C, =1, (Ay,B,,A,,B,, A, ,B,,C,)

i —
C, =A, B, + (A, ®B,).C,=1, (A,,B,,A,,B,, A, ,B, A, B, , Cy)

Thelook-Ahead Carry Adder

ada ja Fouly U Gt (g 5l 5 Gl Gals QW8 mdais g0 50 JSIas Hlaa il
. B PR A A A, B

— sl L de et | egy
Par ‘s ras raal

A B A B A B X A B
(68 G Cn _@ —t Cin (
x X 1 X %

it

()
00

()

{L

YAMSB b2 2 X, (LSB

FIGURE 6-18

Logic diagram for a 4-stage look-ahead carry adder.

Combination look-Ahead and Ripple Carry Adders in cascaded adders

6-4 COMPARATORS

The basic function of a comparator 1s to compare the magnitudes of
two binary quantities to determine the relationship of those quantities.
In its simplest form, a comparator circuit determines whether two

numbers are equal.

Equality

| The input bits are not equal.

0 —
i —

| —)

| The input bits are not equal.
¢ s [—

O The input bits are equal.

! D—u The input bit ! |
0 . € Imput bits are equal. 0 _}

Y Y

Equality

|) A=B
HIGH indicates equality.

.‘%-. 1 _\
1SBs B, —s

General format: Binary number A = A 4
Binary number B — BB,

Can be expanded to any number of bits

EXAMPLE 6-5

Apply each of the following sets of binary numbers to the
comparator inputs in Figure 6-21, and determine the output by

following the logic levels through the circuit.
(a) 10 and 10 (b) 11 and 10

Ap=0 —\D LSBs B —4
B,f’; = 0 H

A =1 —\j : MSBs ; —\M
B] o o By, —#

(a) General format: Binary number A — A, A
Binary number B — BB,

i; — _-.?))
HIGH indicates equality.)7 0 — not equal

Related Problem Repeat the process for binary inputs of 01 and 10.

INEQULITY

1. If A3 =1 and B3 = 0, number A is greater
than number B.

2. If A3 = 0 and B3 =1 number A is less than
number B.

3. If A3 = B 3, then you must examine the

next lower bit position for an inequality.

EXAMPLE 6-6

Determine the A = B, A > B, and A < B outputs for the input
numbers shown on the comparator.

COMP

0 0
: A
1 A>B |——
0 3

A= — ()
1 0
— SR o
0
0 3

Related Problem What are the comparator outputs when A;4,A\A =
1001 and B;B,B,B, = LOW?

THE 74HC854-BIT MAGNITUDE COMPARATOR

The 74HCSS 1s a comparator, also available in other IC families. This
device has all the mputs and outputs of the generalized comparator
previously discussed and, in addition, has three cascading inputs:
A<B, A=B, A>B.

(10) . COMP
(12)
(13) o
(15)
(4) (5)
Casc-adingj (3) A=B A-B () }Oulpu‘[b
inputs L 2) (7)
(9)
(11)
(19 B
(1)

Vee(16), GND(8)

(a) Pin diagram (b) Logic symbol

EXAMPLE 6-7

Use 74HC85 comparators to compare the magnitudes of two
numbers. Show the comparators with proper interconnections.

COMP e COMP
0 Sl
A A
3 s
A>B A>B A>F A>B |l—
+5V A=B A=F A=E A-B}——
o |A<B A<E Awh Aeob -
0 — o
B B
3 13
1 74bc85 74HCSS

Related Problem Expand the circuit to a 16-bit comparator.

8-bit

SECTION 6-4 REVIEW QUESTIONS

1. The binary numbers A = 1011 and B = 1010 are applied to the
inputs of a 74HCS85. Determine the outputs.

2. The binary numbers A = 11001011 and B = 11010100 are
applied to the 8-bit comparator in previous example. Determine the

states of output pins 5, 6, and 7 on each 74HCSS.

COMP COMP
10 0
A A
3 3
A>B A>B}l——JA>B A>B|—
+5V A=B A=8H A=B A=Bt——
® {A<B A<B A<B A<B }|———

0 0
}B }B
3 : 3

T4HCBS T4HCES

—
—

COMPUTER NOTE (]

Addition 1s performed by computers on two numbers at a time,
called operands. The source operand 1s a number that 1s to be

added to an existing number called the destination operand,
which 1s held in an ALU register, such as the accumulator. The
sum of the two numbers 1s then stored back in the accumulator.
Addition 1s performed on integer numbers or floating-point

numbers using ADD or FADD instructions respectively.

COMPUTER NOTE L

-

In a computer, the cache 1s a very fast intermediate memory
between the central processing unit (CPU) and the slower main
memory. The CPU requests data by sending out its address
(unique location) in memory. Part of this address 1s called a tag.
The tag address comparator compares the tag from the CPU with
the tag from the cache directory. If the two agree, the addressed
data 1s already 1n the cache and 1s retrieved very quickly. If the
tags disagree, the data must be retrieved from the main memory

at a much slower rate.

HANDSON TIPS

Most CMOS devices contain protection circuitry to guard against
damage from high static voltages or electric fields. However,
precautions must be taken to avoid applications of any voltages
higher than maximum rated voltages. For proper operation, input
and output voltages should be between ground and Vcc . Also,
remember that unused inputs must always be connected to an
appropriate logic level (ground or V_. Unused outputs may be left

open.

6-5 DECODER

A decoder 1s a digital circuit that detects the presence of a specified
combination of bits (code) on its inputs and indicates the presence of
that code by a specified output level. In its general form, a decoder
has n input lines to handle n bits and from one to 2" output lines to
indicate the presence of one or more n-bit combinations. In this
section, several decoders are introduced. The basic principles can be

extended to other types of decoders.

TheBasic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the

inputs of a digital circuit.
In the representation of a binnry number or other weighted code 1n this

book, the LSB 1s the right-most bit in a horizontal arrangement and the
top most bit in a vertical arrangement, unless specified otherwise.

L)

A, —
{MSB
(b)

1

0

‘c{>1
P

|
(a

If a NAND gate 1s used, a LOW output will indicate the presence of
the proper binary code.

The 4-Bit Decoder

In order to decode all possible combinations of four bits, 16 decoding
gates are required (24 = 16). This type of decoder is commonly called
either a 4-line-to-16-line decoder or a 1-of-16 decoder

DECIMAL BINARY INPUTS DECODING @ L
A A A A FUNCTICOCN | O T 2 3 4 5 6 7 5
b e BIN/DEC

0 R0 0 A A O T S R Op—— 1
NAND S 0SL A48k b4 &l5) upt 11t] o ip
2 0 _0 -1 .0 AAA, 1 o F f 1.1 I 2b—— 1
G519 JSOQ‘ 1ﬁ5‘4)‘ 44;‘;@\”‘14?5 IJJiJ ‘Pﬁﬁl/ 3p— 1
DDk D LSRR Jali o i |
Sy owl20 1 0 1al AAhAg Sp—1
%51'6_"50‘-5\? 41J Jf)“b %[A}EOJM L@'mjﬁ | —1 6pP— 1
7 _C&JM\PQL&AANQu_mSNAI\th — |2 7 1
N b8 N st A a Sa ol 2 1
1
1
1
i
1
)

A
0 1 |1
1 0 1
1 1 0
{0 B
1 3A2AJA0 e R
111
1 Dl
I 1 1
B 1
1 11
]

SO
1 B—
1 P—

10 o il 1 10 E:

16 PR e A3A2A,AU T e 1

12 0 @ @ AAPTOREREI S 0 1 1] 12—

13 t 1 0 1 ATV] 13 ;‘:

14 il e N0 AASASHERERIT 1 <1 I

15 1 e WL Tl =

A3fAA A

EXAMPLE 6-8

Determine the logic required to decode the binary number 1011 by
producing a HIGH level on the output.

An
A .;ij—szE A,A

Related Problem Develop the logic required to detect the binary
code 10010 and produce an active LOW output.

THE 74HC1%4 1-0F-16 DECODER

In order to decode all possible combinations of four bits, 16 decoding
gates are required (2* = 16). This type of decoder is commonly called
either a 4-line-to-16-line decoder or a 1-of-16 decoder

XY

T

(23)
(22)
k (_21)_
4, _(20)

o
00O fa N
— P
D = 2 W0 DN P W) -

g

CS, 8 d & a7
ﬁ. (19):

2
h

(a) Pin diagram (b) Logic symbol

COMPUTER NOTE o

An 1nstruction tells the computer what operation to perform.
Instructions are in machine code (1’s and 0’s) and, in order for the
computer to carry out an instruction, the instruction must be
decoded. Instruction decoding is one of the steps in instruction
pipelining, which are as follows:

Instruction 1s read from the memory (instruction fetch),
instruction 1s decoded, operand(s) 1s (are) read from memory
(operand fetch), instruction is executed, and result 1s written back
to memory. Basically, pipelining allows the next instruction to

begin processing before the current one 1s completed.

EXAMPLE 6-9

A certain application requires that a 5-bit number be decoded. Use
74HC154 decoders to implement the logic. The binary number 1s
represented by the format A,A;4,AA,.

BIN/DEC BIN/DEC
Low-order High-order
op— 0 00— 16
Lg—— i 10— 1

2er—— 2 2E—— 18

3ifr— 3 Sib—— 0

4do—- 4 4Pp— 20

Sf—— 5 Sie—— 21

A, 1 6p— 0O 1 66— 32
A _ 2 77— 7 2 fil—.03
A,y 4 4 Ep— 8 4 §p— 21
A, ———eo—]8 9pb— 9 8 op— 25
10p—10 10— 26

11 p—11 11 27

12p——12 12 28

13p—13 13 29

es, 14po—14 s, 14 30

Ay SR I5—15 4 & 15 31

EN a4 EN
zs. Cs.
74HC154 74HC154

Related Problem Simplify the Boolean expression

Input/Output

An Application ports
Controller Printer
. & 1/0
Decoders are used in many o Data bus
types of applications. One g L
1Q 1 Keyboard
example is in compute.rs s
for input/output selection. -
Each I/O port has a _
BIN/DEC _ |. Monitor
number, called an address, op O
. . . . |
which uniquely identifies > E EN
it. When the computer e e
wants to communicate @ 5p =
. . . .) 6 pP— :
with a particular device, it 0 cor A1 ; 7b-~ N ey
. . por '
1ssues the appropriate address ‘:3 4 g ; e ot SC;i{I(l;lBI‘
address code for the I/O i 0] Sl i -
. 1] | O S O
port to Wthh that 12 b t..()lllj-l (.:It.

: . o | otento Ext. disk
particular device 18 = pL. | B VO
connected. This binary port - ey 15p-/ B oy

. reques
address Is decoded and the el T
appropriate decoder output L0
1s activated to enable the g L2

I/O port.

The BCD-to-Decimal Decoder

4-line-to-10- line decoder or a 1-of- 10 decoder. Implemented with ten NAND gates.

DECIMAL BCD CODE DECODING
B DIGIT As A, A, Ao FUNCTION
AzAA A i} 0 0 0 0 0 AAA A
Z:;EZE]A{} i}] 0 0 0 1 AsgzzlA{)
Taa B 2 0 0 1 0 AAA A,
AzA-A A g} 4 0 1 0 0 AsAA A,
L 5 0 1 0 T AAA A
AMA A, §) AsAiAg
L, B 6 0 1 i 0 A4 AR
34241 A¢ i} 7 0 1 1 | AAA A,
E} A, AIEO 3} 8] 0 0 0 AAA A,
- = 9 1 0 0 1 AALA A,
A?‘AZA]_AO i}
A3A5A A i}
A3A,A A, i}

Iy

Iy

(b)

The 74HCA42 1s an integrated circuit BCD-to-decimal decoder. show

the output waveforms.

EXAMPLE 6-10

— (o} (!
(= E
~
—
.m
))))))))))
124345A67901 m
| | S| S|] S| | | |
et | N
=
& =N N ~ o0
C(o = O
m o O
~ =
= 2 o
5 =
: T
— ™ < =
<
| A~ ~| ~ —
i | <k on| o e
| p— | | p—
et | | | e R

The BCD-to-7-Segment Decoder

L ED Display

LCD Displays i~ B

crystal display. L ~

operate by polarizing | ?
so that a nonacti Ny

segment reflects 1nc I b J;

light and thus apj éi—-ﬂ I g

invisible against ; f i
background. An actn . N | i
segment does not e iy SN

incident light and d DP g
appears dark. L +
consume much less POWET (a) Common-anode (b) Common-cathode

than LEDs but cannot be
seen 1n the dark, while
LEDs can.

The BCD-to-7-Segment Decoder

digital system application Lis
Jle SQ Ol sie 40 258 4xllas 4 Juad
alise Gl (Kan 50l)5 e HasS0
Rl Al a8 e ladal)3 (gl

BCD
imput]

Binary
coded
decimal
input

>y D

BCD/7-seg
a

00 N
 ~u o QL o O

>

—)

7-segment
decoding
logic

Output lines
connect to
7-seement
display device

™~ 8N 9

7-segment display

THE 74LS47 BCD-TO-7-SEGMENT DECODER/DRIVER

Vee

|U6)

BCD/7-seg @)
BI/RBO o———— BI/RBO

T N
BCD | 2 ()
i!]pl.l[\ (2) 4 ¢ (10)

(6) dfpo————
8 (9

ello——
— 3 (15)
1136 P e

RBI ——— RBI g

l (8)

GND
{(a) Pin diagram (b) Logic symbol

Lamp Test When a LOW is applied to the LT input and the BI/RBO is
HIGH, all of the 7 segments 1n the display are turned on.

RBI (ripple blanking input), and BI/RBO (blanking input/ripple
blanking output) functions.
The outputs can drive a common-anode 7-segment display directly.

THE 74LS47 BCD-TO-7-SEGMENT DECODER/DRIVER

Zerosuppression is a feature used for multidigit displays to blank out
unnecessary zeros.

Blanking the zeros at the front of a number is called leading zero
suppression and blanking the zeros at the back of the number 1s called
trailing zero suppression

Zero suppression in the 74L.S47 is accomplished using the RBI and BI/RBO
functions.

BI is the blanking input that shares the same pin with RBO; in other words,
the BI/RBO pin can be used as an input or an output. When used as a BI
(blanking input), all segment outputs are HIGH (nonactive) when BI 1is
LOW, which overrides all other inputs. The BI function 1s not part of the
zero suppression capability of the device.

All of the segment outputs of the decoder are nonactive (HIGH) if a zero
code (0000) is on its BCD in puts and if its RBI 1s LOW. This causes the
display to be blank and produces a LOW RBO.

The logic diagram 1n Figure 6-36ta) illustrates leading zero suppression for a
whole number. The highest-order digit position (left-most) 1s always blanked
if a zero code is on

THE 74LS47 BCD-TO-7-SEGMENT DECODER/DRIVER

l 01
o |

|

O1 11
bo |||
2 1

J} 0000
o |||
RBI IT 8 4 2

E

5 |1
Lr 8 4 2 1

0000

RBI LT 8 4 2

RBI IT 8 4

RBI

(ITTTTT ~ IOy S T o T &
_ 1
il l

(b) Illustration of trailing zero suppression

SECTION 6-5 REVIEW QUESTIONS

1. A 3-line-to-8-line decoder can be used for octal-to-decimal
decoding. When a binary 101 is on the inputs, which output
line 1s activated?

2. How many 74HC154 1-0f-16 decoders are necessary to decode
a 6-bit binary number?

3. Would you select a decoder/driver with active-HIGH or active-
LOW outputs to drive a common-cathode 7-segment LED

display?

6-6 ENCODERS

An encoder is a combinational logic circuit that essentially performs a
"reverse" decoder function. An encoder accepts an active level on one
of its 1nputs representing a digit, such as a decimal or octal digit, and
converts 1t to a coded output, such as BCD or binary. Encoders can
also be devised to encode various symbols and alphabetic characters.
The process of converting from familiar symbols or numbers to a

coded format is called encoding.

The Decimal to BCD Encoder

10-line-to-4-line encoder. | BCD CODE
DECIMALDIGIT = A, A, A, Ag
DEC/BCD 0 0 0 0 0
(g 1 0 0 0 |
i 2 0 0 1 0
: il 3 0 0 1 1
Decimal | —14 2F— | BCD ¢ g : 7 Yy
input 5 41— [output 5 0 1 0 1
—6 8 6 0 1 | 0
— 1 7 0 1 1]
— |8 8 1 0 0 0
: 2 9 1 0 0 1
1
A3 — 8 + 9 ”) % >—AU (L.SB)
3)
—]
Ay=4+5+6+7 == It
K
3 3\
A =2+3+6+7 : SeE 4
7 89—
8
A0=I+3+5+7+9 , 4_L>&A3 (MSB)

Eun 3550) JSoiie

THE 74HC147 DECIMAL-TO-BCD ENCODER

Priority encoder with active-LOW inputs and outputs
Zero output 1s represented when none of the inputs is active.

Vee
(16)
HPRI/BCD
D4
D5 1 &2
D6 2 0&31
4 OJQL‘A'}
D7 (14) —
Bo—— AL
D8
A2
Al ®
GND
GND

(a) Pin diagram (b) Logic diagram

THE 74L5148 8-LINE-TO-3-LINE ENCODER

Priority encoder

EI (enable input) must be LOW.

It also has the EO (enable output)
and GS output for expansion
purposes.

The EO 1s LOW when the EI 1is
LOW and none of the inputs (0
through 7) 1s active.

GS 1s LOW when EI 1s LOW and
any of the inputs 1s active.

Vee
(16)

5) HPRI/BIN (15)
——Q Ei EO P————
__19 4, cs -
— = d3 2 p—=—— 14,

13) - 3 1k (6) A,

) 1l

@ 4 5

G) 4 6

3 _J 7

(8)
GND

» The 74LS148 can be expanded to a 16-line-to-4-line encoder by
connecting the EO of the higher-order encoder to the EI of the
lower-order encoder and negative-ORing the corresponding binary
outputs.

* The EO 1s used as the fourth and most significant bit. This
particular configuration produces active-HIGH outputs for the 4-bit

binary number.

6 |
gi

1 Ef

Tt

i 23 45

7415148 7415148

EO 1 2 4 EO 1 2 4 GS

W

An Application

|

FIGURE 6-42

A simplified keyboard encoder.

'_%
L

|

7k 8i|— 98|-
I T HPRI/BCD
- 1
R, %Rq éRb 9
‘ gi 1 p—
i ds a—
; e
4 s e} —d7 e
ol —
L—do9
o % %, éfﬁ 74HC147
L —
i
Ry
All BCD complement lines

:

o°F

t

are HIGH indicating a 0.
No encoding necessary.

’ 1 BCD complement

]
.2

e e i e

SECTION 6-6 . . . hal-
REVIEW 1. Suppose the HIGH levels are applied to the 2 input and the 9 input of the circuit

in Figure 6-38.

(a) What are the states of the output lines?

(b) Does this represent a valid BCD code?

(c) What is the restriction on the encoder logic in Figure 6-38?
A

2. (a) What is the A;A; AiAq output when LOWS are applied to pins 1 and 5 of the
14HC147 in Figure 6-3%?

(b) What does this output represent?

6-7 CODE CONVERTERS
BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion
process 1s as follows:

1. The value, or weight, of each bit in the BCD number 1s represented by a binary
number.

2. All of the binary representations of the weights of bits that are 1s in the BCD
number are added.

3. The result of this addition is the binary equivalent of the BCD number.

A more concise statement of this operation is

The binary numbers representing the weights of the BCD bits are summed to
produce the total binary number.

Let’s examine an 8-bit BCD code (one that represents a 2-digit decimal number) to un-
derstand the relationship between BCD and binary. For instance, you already know that the
decimal number 87 can be expressed in BCD as

1000 0111

\—\/—/h-\f.._./

8 7

The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That
is, the left-most group has a weight of 10, and the right-most group has a weight of 1. Within
each group, the binary weight of each bit is as follows:

Tens Digit Units Digit
Weight: 80 40 20 10 8 & 2 1
Bit designation: B, B, B, B, A A, A A

The binary equivalent of each BCD bit is a binary number representing the weight of that
bit within the total BCD number. This representation is given in Table 6-7.

|' (MSB) BINARY REPRESENTATION
BCD BIT | BCD WEIGHT @ 64 32 16 8 4

2
Aq 1 0 0 0 DA 0 1
A 2 0 0 0 0 0 1 0
A, 4 0 0 0 0 1 0 0
As 8 0 0 0] 0 =40 0
By 10 0 0 0 1 0 1 0
B, 20 0 0 i 0 1 0 0
B, 40 0 1 0 I 0 0 0
B, 80 l 0 1 QL () 0

St e, R e £ TR0 N B

If the binary representations for the weights of all the 1s in the BCD number are added, the
result is the binary number that corresponds to the BCD number. Example 612 illustrates this.

I EXAMPLE 6-12

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 9%) to

binary.

Solution

Write the binary representations of the weights of all Is appearing in the numbers, and

then add them together.

80 40 20
0 0 1

10 8 4 2 1
0O 0 1 1 1

o

80 40 20 10
1 0 0

0000001
0000010
> 0000100
>+ 0010100
0011011
2 (001000
> 0001010
s + 1010000
1100010

EE S R

20
Binary number for decimal 27

8
10
80

Binary number for decimal 98

With this basic procedure in mind. let's see how the process can be implemcnted with
logic circuits. Once the binary representation for each 1 in the BCD number 1s determined.
adder circuits can be used to add the |s in each column of the binary representation. The 1s
occur in a given column only when the corresponding BCD bitis a 1. The occurrence of a
BCD 1 can therefore be used to generate the proper binary 1 in the appropriate column of
the adder structure. To handle a two-decimal-digit (two-decade) BCD code, eight BCD in-
put lines and seven binary outputs are required. (It takes seven bits to represent binary num-
bers through ninety-nine.)

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2. Exclusive-OR
gates can be used for these conversions. Programmable logic devices (PLDs) can also be
programmed for these code conversions. Figure 6-43 shows a 4-bit binary-to-Gray code
converter, and Figure 644 1llustrates a 4-bit Gray-to-binary converter.

Binary Gray Gray Binary

e
% G, (LSB) i DB{1 (LSB)
1

- G,

i B
B, — G-, (MSB) |)
3 3) CﬁAl

s B; (MSB)

‘SECTION 6-7 |
REVIEW 1. Convert the BCD number 10000101 to binary.

2. Draw the logic diagram for converting an 8-bit binary number to Gray code.

MUX DMUX

muttpleer JUUUUULTLILILT 1T JUUHUIN permuitiptexer

. D
Data from Data from Data from Data from | i I | | | | | I I | |
AtoD BtoE CtoF AtoD)/
Afl
Ary At, Aty Aty E
B — = o [1T11]
Al
Aty
Switching Switching
sequence sequence

control input control input

6-8 MULTIPLEXERS (DATA SELECTORS)

MUX
DATA-SELECT INPUTS Data [So —0
S, So select | §, —— 1
0 0 D
0 D 0 Y Data
0 I D, D[output
1 0 D, _ Dalq i ———— |1
- inputs | p. 9
] I D, 2
Dy ————3

The data output is equal to Dyonly if S, = O0and S, = 0: Y = DOESU.
The data output is equal to Dy only if S, = 0and §;, = 1: Y = D,§|SU.
The data output is equal to D, only if S, = 1 and S, = 0: ¥ = D.,S,S,.
The data output 1s equal to Dy only if S, = 1and §; = 1: ¥ = DsS,S,.

i

Y = DyS,S, + D,S,\S, + D.S\Sy + DsS,S,

POP

MUX 2 s
ke Ml il
Shiyw 4 (5 3) 90 cile Dl Jasa
S)55 il

I EXAMPLE 6-14

The data-input and data-select waveforms in Figure 6—48(a) are applied to the
multiplexer in Figure 6-47. Determine the output waveform 1n relation to the inputs.

| | |
Dy | I— S 4l
| JLr | | |

| | | | l
D | | ! |
R N— I | I |
Zl S R | .
I | | i ! | |
Dl B | |
| T | ——
So! 0 1 0 1 0 I 0 |
— |

I |] I | }
(2 110 10 Lt jotro ot
| ; | | | | | | |

| | | | | | | | |

| | | | | | [| |

| l | | I | [| |

| | l l l l [l l

| | 1 R
by Y '. ! !

b, D D Dy Dy Dy Dy Dy

THE 74HC157 QUAD 2-INPUT DATA SELECTOR/MULTIPLEXER

DATA SELECT 6 Ve
1A ENABLE
IB | 4A
1Y | ;4B
2A |5 4Y
2B 3A
2Y | ' 3B
GND 3Y

(a) Pin diagram

Enable U0 gy
Data —22

14 2
15 3

select —-I
1
|

@y

54 _O) |
»g _©6)

L @) oy

34 (D
3 (10)

L O) 3y

o U

4p U3) |

4Y

(b) Logic symbol

THE 74L5151 8-INPUT DATA SELECTOR/MULTIPLEXER

ENABLE

GND

(a) Pin diagram

Enable

- (15)

)
§3))
(10)

(9)

(4)

(3)

2)

(1)

(14)
(13)
(12)

MUX

2

=

N —
9
-~

~ S W N e N

(5)

:(6) y

(b) Logic symbol

I EXAMPLE 6-15

Use 74LS151s and any other logic necessary to multiplex 16 data lines onto a single
data-output line.

Solution

1/6 74HC04

MUX

S,
D, 19 D5:- —1 0
D 1 Dg 1
D.—2 Dy,—2
D, 13 Dy ——3 ;
D, 14 5 ¥ D, 14 2
Dﬁ_ 5 ‘Dl —1'9 D—:Diy
D,— e Dy 6 1/4 74HCO0
D.___ 17 D, 7
74LS151 7ALS151

LOW selects A3 A-A | A

Applications

A 7-Segment Display Multiplexer IS L

Data

/— HIGH «elects B; B+ B By,

select
o “ —
A, i MUX « —o
Bn 1 C L
A
1 B d
B] *
A. & & ?
B, f T
A, D g
|
74LS157 74L847 '
h______J av__= o
LSD BCD: A3A,A,Aq . l l ' '
: Common-cathode — pr—
MSD BCD: B3B,B B, displays ' l ' l
Amm— Pas =N
LOW enables 1.SD B dieit A dieir
HIGH enables MSD (MSD) (LSD)
Decoder
= A, 1Yy o——
i
0% o"‘_._n_
*Additional buffer drive 0 \
circuitry may be required. Gl (EN) 1Y, o |
LOWSs enable common-anode
7-seg display.

174Ls139

EXAMPLE 6-16

Implement the logic function specified in Table 6-9 by using a 74L.S151 8-input
data selector/multiplexer. Compare this method with a discrete logic gate
implementation.

INPUTS - OUTPUT
A, A
MUX
—_ECEN 0 0 0 0
A, 0 0 0 1 ' 1
Input | 4 | 0 0 1 0 0
variables | G3
A, 2 0 | | 1
0 i 0 0 0
Q 1
+5V I 0 ' 1
o—i?
. 1] | 0 I
® 5 E
6
o—|7

= 74LS151 y — EEEIAU + ‘EJ‘AlAU + A:Al "'\[‘ + 4 u’ihi“

EXAMPLE 6-17

Implement the logic function in Table 610 by using a 74L.S151 8-input data
selector/multplexer. Compare this method with a discrete logic gate

implementation.
MUX
ok
A, 0
0]
As G
As 2
Aq 0
]
2
+5V 3
o
5
6
7
74LS151

e
o L

DECIMAL |

DIGIT | As
0 0

| 0

2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 1
10 I

1

1

1

1

1

[
Ln

INPUTS
Az A
0 0
0 0
0 l
0 l
1 0
1 0
] |
1 |
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

Aq

OuUTPUT
Y.

S = = O

== I S e T e B R

. |po b1 |D2 (D3 |D4 |D5 |D6 [D7

A3 0 1 2 3 4 5 6 7

A3 8 9 10 11 12 13 14 15
A3 A3 VCC GND A3 VCC A3 VCC

R oo Sl (398 J g Agldia A gaa
S (e dhay AT sleas s 4 b i i A) g2 S) oS Caw 4w
A8 e g | Al 1 a1l (D) dsaa 048 Gl sl s jled
s o Jeas o) ledlom 4 i i an 1) O sia a v dasi e | Al

ihis Jta mhou b GND 4 235 0 sl 53 8 81 (<l

ihie 1 mhu b Ve 4 a1 52 8 S (o

A3 252 4351 asd sl 0 S 5A3 dSwaan 1 sl she 0 Sl (7

/Do D1 [D2 |D3_|D4_|D5_|D6_|D7 _
A3 0 1 2 3 / S 6 7

A3 8 9 10 11 12 13 14 15

A3 A3 VCC GND A3 VCC A3 VCC

ISECTION 6-8
REVIEW 1. In Figure 6"'47, Dg =], D] = 0, DZ = 1, D3 = 0, SO = 1, and 51 = (. What is the

output?
Z. Identify each device.
(a) 745157 (b) 74LS151

3. AT4LS151 has alternating LOW and HIGH levels on its data inputs beginning with
D, = 0. The data-select lines are sequenced through a binary count (000, 001, 010,
and so on) at a frequency of 1 kHz. The enable input is LOW. Describe the data

output waveform.
4. Briefly describe the purpose of each of the following devices in Figure 6-52:
(a) 745157 (b) 741547 (c) 7415139

6-9 DEMULTIPLEXERS

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes
digital information from one line and distributes it to a given number of output lines.
For this reason, the demultiplexer is also known as a data distributor. As you will
learn, decoders can also be used as demultiplexers.

Data
inpurt } D)
)
.._
" Dy |
e * Data
[S0 ? F output
Select | ._} D. | lines
lines &y <
; D
} .

FIGURE 6-55

A 1-line-to-4-line demultiplexer.

I EXAMPLE 6-18

The serial data-input waveform (Data in) and data-select inputs (S, and S,) are shown

in Figure 6-56. Determine the data-output waveforms on D, through D, for the
demultiplexer in Figure 6-55.

=
|
e

: | S
Slll | ‘ : ! | |
ot oq o b
- -
IR AT B
P _ITLLt bob bt
I-—- |)
D, : l L1 g0y b
I [T
|
D, | : 107 | 'L"__}
! ! L
ISR) I g

THE 74HC154 DEMULTIPLEXER

DEMUX () FIGURE 6-57

(2) By The 74HC154 decoder used as a

3) B, demultiplexer.
O———i 1)
D& DF
0
D,
5 G
8) De
D(— D-,
> O 5
(1) ¢
O——— D

3 11 Y
& 1o b2 D,

(13)

11 b——— D
(14) i1
120——— D

13 P 1= D
14 :)—(——)— D
ary °

I.-Q.::-, 'F
- (19) EN

W N = O

“I¥
Data (
select <
lines

“\
ool
—
N | 1N
)
S
=]
-
N 00 -1 N W

SECTION 6-9
REVIEW 1. Generally, how can an decoder be used a5 a demultiplexer?

2. The 74HC154 demultiplexer in Figure 6~57 has a binary code of 1010 on the
data-select lines, and the data-input line is LOW. What are the states of the
output lines?

6-10 PARITY GENERATORS/CHECKERS

Basic Parity Logic
The sum (disregarding carries) of an even number of 1s is always 0, and the sum
of an odd number of 1s is always 1.

(a) Summing of two bits {b) Summing of four bits

THE 74LS280 9-BIT PARITY GENERATOR/CHECKER

g
(2) A
o
Eu; s
Pilta) (12) D (Z) > Even
e (13) i L 2 0dd
\I M | . Number of Inputs Qutputs
o |© A-IThatAre HIGH | SEBven 3 0Odd
H
L 4) 7 02 4 s H 1L
1,3,5,7,9 L H
(a) Traditional logic symbol (b) Function table

Parity Checker When this device is used as an even parity checker, the number of input
bits should always be even; and when a parity error occurs, the £ Even output goes LOW
and the ¥ Odd output goes HIGH. When it is used as an odd parity checker, the number of
input bits should always bé odd; and when a parity error occurs, the 2 Odd output goes
LOW and the 2 Even output goes HIGH.

Parity Generator 1If this device is used as an even parity generator. the parity bit 1s taken
at the ¥ Odd output because this output is a 0 1f there 1s an even number of input bits and it
is a | if there is an odd number. When used as an odd parity generator, the parity bit is taken
at the ¥ Even output because it is a 0 when the number of inputs bits is odd.

Four-conductor transmission line

Error gate

L 4
§ u } Error = 1

_MUX r
_—AEN
5 = 0 DEMUX
o |
S L GY oY ob—— D,
S ® 2 D
2 2 1p 1
Dy, T 0 2p Ds
D, - 1 Y 3b D,
D &
}) T | 2 4 Q ? 1{)4
D 3 5p * Ds
D, 4 6 p—e D
Ds 5 5 7p 3%,
: &
D =
! 74LS138
LS 151 Even parity bit (D-
¥
Even parity bit Storage
A A
B B
© C
D D
g % 0dd £ T Even
F F
G G
H H
EVEN parity EVEN parity
FIGURE 6-60 venerator ,‘,"he'":kcr
(74L.5280) *Storage devices are introduced in (741.S280)

Simplified data transmission system with error detection. Chapter 9 and used in other later chapters.

3 4 5 6 7 2 4 5 6 7
-
S0 |
| l l | | : -
¢ 1 | ! l | | ! | e
| e] . | | [=l
| | | |] | | I | | - | I
a1] f B | i
> S . o Wi
L | | AN
i i |
Data stieamat STl | TP e P I ey SR 3
DEMUX input Do 100D (D3 Dy Ds Dg | P |DU|DI|DJ|D3|D4|D:'-|D@ :
Lo T [l T
Bege - 1 & A RN |

Bit received
incorrectly
(0 was transmitted)

COMPUTER NOTE

' The Pentium MICTOProCcessor

| performs internal parity checks as
well as parity checks of the external
data and address buses. In a read
operation, the external system can
transfer the parity information
together with the data bytes. The
Pentium checks whether the

resulting parity is even and sends out

the corresponding signal. When it

' sends out an address code, the

| Pentium does not perform an address
| parity check, but it does generate an

| even parity bit for the address.

SECTION 6-10
REVIEW 1. Add an even parity bit to each of the following codes:

(a) 110100 (b) 01100011
2. Add an odd parity bit to each of the following codes:
(a) 1010101 (b) 1000001

3. Check each of the even parity codes for an error.

(a) 100010101 (b) 1110111001

6-11 TROUBLESHOOTING

DIGITAL SYSTEM
APPLICATION

SUMMARY

Half-adder and full-adder operations are summarized in Figure 6-74.

® L ogic symbols with pin numbers for the ICs used in this chapter are shown 1n Figure 6—75. Pin
designations may differ from some manufacturers’ data sheets.

® Standard logic functions from the 74 XX series are available for use in a programmable logic
design.

Half-adder Full-adder

Inputs | Carry In
A B ’ C,‘n

pe O e OO e
i = e el e e

—_—— = 0 OO

e D D e o YD
— O O D - O

DIGITAL SYSTEM
APPLICATION

Seven-segment displays are used in many
types of products. The tablet-counting
and control system that was described in
Chapter 1 has two 7-segment displays.
These displays are used with logic circuits
that decode a binary coded decimal
(BCD) number and activate the
appropriate digits on the display. In this
digital system application, we focus on a
minimum-gate design for this to illustrate
an application of Boclean expressions
and the Karnaugh map. As an option,
VHDL is also applied.

The 7-Segment Display

Figure 4—47 shows a common display
format composed of seven elements or
segments. Energizing certain
combinations of these segments can
cause each of the ten decimal digits to be
displayed. Figure 4—48 illustrates this
method of digital display for each of the
ten digits by using a red segment to
represent one that is energized. To
produce a 1, segments b and ¢ are
energized; to produce a 2, segments a, b,
g €, and d are used; and so on.

LED Displays One common type of
7-segment display consists of light-emitting

FIGURE 4-47

Seven-segment display format showing
: arrangement of segments.

diodes (LEDs) arranged as shown in Figure

4—49. Each segment is an LED that emits
light when there is current through it In
Figure 4—49(a) the common-anode arrange-
| ment requires the driving circuit to provide a

ﬂ

I

e

low-level voltage in order to activate a given
segment. When a LOW is applied to a seg-
ment input, the LED is turned on, and there
is current through it. In Figure 4-49(b) the
common-cathede arrangement requires the
driver to provide a high-level voltage to ac-
tivate a segment. When a HIGH is applied to
a segment input, the LED is turned on and
there is current through it.

LCD Displays Anocther common type
of 7-segment display is the liquid crystal
display (LCD). LCDs operate by polariz-
ing light so that a nonactivated segment
reflects incident light and thus appears
invisible against its background. An acti-
vated segment does not reflect incident
light and thus appears dark. LCDs con-
sume much less power than LEDs but

=
s _.‘|

U

'::l
Y

l
f—=-%
—
—;l

ﬂ

|
—
‘::‘-r,‘
_.l
_l
‘:“.—.-'l
TE—
ey

|
]
%
I
o\
L-

FIGURE 4-48

T

l'\.

>

S
S
A —
k=%
I
e
lv—--_,,
o,

Display of decimal digits with a 7-segment device.

+V
a T [—

> x=
f f
b 1 b———aaes
g _ g o

b 4
e e
e =
—

{a) Common-anode

FIGURE 4-4%9

Arrangements of 7-segment LED
displays.

(b) Common-cathode

cannot be seen in the dark, while
LEDs can.

Segment Logic
i~}) Lf‘:

Each segment is used for various decimal
digits, but no one segment is used for all
ten digits. Therefore, each segment must
be activated by its own decoding circuit
that detects the occurrence of any of the

numbers in which the segment is used.

output columns of the table indicates an

' activated segment.

Since the BCD code does not include

' the binary values 1010, 1011, 1100, 1101,

: 1110, and 1111, these combinations will

| never appear on the inputs and can

therefore be treated as “don't care” (X)
conditions, as indicated in the truth table.

 To conform with the practice of most IC

i manufacturers, A represents the least

From Figures 4-47 and 4-48, the segments significant bit and D represents the most

that are required to be activated for each
displayed digit are determined and listed
in Table 4-9.

@] | ,. S¢ F 1ent L

(ruth 1abl

The segment decoding logic reqUIres f0ur :

binary coded decimal (BCD) inputs and

seven outputs, one for each segment in

gram of Figure 4-50. The multiple-out-

put truth table, shown in Table 4-10, is

| actually seven truth tables in one and

| could be separated into a separate table
for each segment. A 1 in the segment

significant bit in this particular application.

]
' D C - { +} <
<nnles Xpressions 1or the
’ (=T~ L g B U m i NS

Logic From the truth table, a standard

wa,m nenct

 SOP or POS expression can be written for
i each segment. For example, the standard
‘ SOP expression for segment a is

+ DCBA + DCBA + DCBA + DCBA |

and the standard SOP expression for
| segment e is

Expressions for the other segments can

be similarly developed. As you can see, the
expression for segment a has eight product
{ terms and the expression for segment e has
four product terms representing each of
the BCD inputs that activate that
segment. This means that the standard
SOP implementation of segment-a logic
requires an AND-OR circuit consisting of

. eight 4-input AND gates and one 8-input
OR gate. The implementation of segment-
' e logic requires four 4-input AND gates
and one 4-input OR gate. In both cases,

: four inverters are required to produce the

. complement of each variable.

[nw TON (T Lu

oment Logic Lets begln by obtaining

[=

a minimum SOP expression for segment a.

the display, as indicated in the block dia- ! 61 = DCBA + DCBA + DCBA + DCBA '

: A Karnaugh map for segment a is shown in

+ Figure 4-51 and the following steps are

i carried out:

, 5 Step 1. The 15 are mapped directly from
i e = DCBA + DCBA + DCBA + DCBA

Table 4-10.

TABLE 4-9

Active segments for each decimal

digit.

FIGURE 4-50

Block diagram of 7-segment logic
and display.

O &0 =1 Oy b B W R e

Binary
coded
decimal
input

D

SEGMENTS ACTIVATED

abcodef
b, ¢

a b de g

a, b, c d g
bcofg
acdf g
acdefg

& . bEe

abc def g
a, b, df g

7-segment
decoding

logic

e S B G e

7-segment display

DECIMAL INPUTS ‘ SEGMENT OUTPUTS
DIGIT c d e

D B A g
0 0 0 0 0 i 1 1 1 1 1 0
1 0 0 0 1 0 l 1 0 0 0 0
2 0 0 1 0 1] 0 1 1 0 |
3 0 0 1 1 i 1 | | 0 0 I
4 0] 0 0 0 | I 0 0 1 1
5 0 1 0] I 0 1 | 0 1 1
6 0 1 1 0 1 0 l 1 1] |
7 0 1 1 I | ! | 0 0 0 0
8 1 0 0 0 1 I | 1 1 1 |
9 1 0 0 1 | 1 I 1 0 1 1
10 1 0 1 0 X X X X X X X
11 I 0] 1 X X X X X X X
12 |] 0 0 X X X X X X X
13 1 1 0 1 X X X X X X X
14 | 1] 0 X X X X X % X
15 1 1 1 | X X X X X X X

Qutput = 1 means segment is activated (on)
Output = 0 means segment is not activated (off)

Output — X means “don’t care”

Step 2. All of the "don't cares” (X) are

placed on the map.

Step 3. The 1s are grouped as shown.

Step 4. Write the minimum product

"Don’t cares” and overlapping of !

Standard SOP expression:

DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA

BA
po_ W, o' 110
= B
00| 1 J 1\
ol OOl Y
N
1 it X |[x)] x
B V-
10 \l 1 \X X/

Minimum SOP expression: D + B + CA + CA

F l‘: 1_.:'

cells are utilized to form the the terms to form the minimum

largest groups possible. 5 SOP expression.

Keep in mind that "don’t cares” do not
term for each group and sum ¢ , _ i
+ have to be included in a group, but in this

| case all of them are used. Also, notice that
' the 1s in the corner cells are grouped with
: a “don’t care” using the “wrap around”

; adjacency of the corner cells.

A

FIGURE 4-52

Karnaugh map minimization of the segment-a logic expression.

The minimum logic implementation for segment a
of the 7-segment display.

Minimum Implementation of Segment-a

Logic The minimum SOP expression
taken from the Karnaugh map in Figure
4-52 for the segment-a logic is

D+B1CALCA

This expression can be implemented
with two 2-input AND gates, one 4-
input OR gate and two inverters as
shown in Figure 4-52. Compare this to
the standard SOP implementation for
segment-a logic discussed earlier; you'll

see that the number of gates and

inverters has been reduced from thirteen

to five and, as a result, the number of
interconnections has been significantly
reduced.

The minimum logic for each of the

remaining six segments (b, ¢, d, e, f,

- and g) can be obtained with a similar

approach.

\ 1 . . A
VHDL Implementation (optional)

i All of the segment logic can be described by

[}
t

| described by the following VHDL program:

t
1
t
1
1
L3

: VHDL for implementation in a programmable

' logic device. Segment-a logic can be

entity SEGLOGIC is

port (A, B, C, D: in bit; SEGa: out bit);

end entity SEGLOGIC;

architecture LogicFunction of
SEGLOGIC is

begin
SEGa <= (Aand C) or (not A
and not C) or B or D

end architecture LogicFunction;

System Assignment

B Activity 1: Determine the minimum

logic for segment b.

W Activity 2: Determine the minimum

logic for segment c.

B Activity 3: Determine the minimum

logic for segment .

. W Activity 4: Determine the minimum

logic for segment e.

B Activity 5: Determine the minimum

logic for segment .

W Activity 6: Determine the minimum

logic for segment g.

® Optional Activity: Complete the VHDL
program for all seven segments by
including each segment logic

description in the architecture.

	chapter 1
	ch 2
	chapter 3
	ch4
	chapter 5
	ch6

